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Abstract

This article consists of some notes taken by the author while studying integrable

probability. References: [1], [2], [3], [4]
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1 Introduction

Integrable probability is a fascinating subfield of probability theory that centers on

probabilistic models endowed with special mathematical structures, allowing for exact

solutions through precise mathematical techniques. These models often connect to the

notion of integrable systems, characterized by high symmetry or hidden mathematical

structures. The term integrable is adapted from statistical physics, where it refers
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to exact solvability or integrable systems, but in integrable probability, its mean-

ing is broader and more flexible, encompassing a wider range of models. A defining

characteristic of integrable probability is the ability to express transition probabilities

or probability distributions using sophisticated mathematical tools such as symmetric

functions, orthogonal polynomials, or contour integrals of special functions.

This property not only sets integrable models apart but also enables rigorous asymp-

totic analysis, making it possible to derive their limiting distributions with precision.

The scope of integrable probability spans a diverse array of models, including both

discrete and continuous types:

• Discrete models: Examples include the geometric Directed Last Passage Perco-

lation (DLPP), discrete Totally Asymmetric Simple Exclusion Process (TASEP)

or Asymmetric Simple Exclusion Process (ASEP), and the stochastic six-vertex

model.

• Continuous models: These encompass the Kardar-Parisi-Zhang (KPZ) equa-

tion, random polymer models, and continuous TASEP/ASEP.

Despite their differences, these models share a common thread: their transition prob-

abilities or distributions can be articulated through the aforementioned mathematical

expressions, yielding insights into their limiting behaviors.

The concept of integrability in this context is notably flexible. For instance, within

the KPZ universality class, some models that lack strict solvability have still been

proven to converge to KPZ limits, broadening the traditional boundaries of integrable

systems. The ultimate ambition of integrable probability is to construct a unified frame-

work—akin to the Central Limit Theorem(CLT) — that comprehensively explains

the limiting behaviors of integrable, approximately integrable, and even non-

integrable models. This vision underscores the field’s potential to bridge diverse

probabilistic phenomena under a single theoretical umbrella.

1.1 Universality in Random Systems

In a coffee stain, before it is dry, particle diffuse and eventually stick to the boundary.

This is why the edges of the stain are darker.

The concept of universality arose in the context of statistical mechanics as a conse-

quence of the study of critical phenomena. To understand what a critical phenomenon
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is, we consider a bar magnet. We describe its capacity of picking up thumbtacks with

an order parameterM . As we heat the system,M decreases and eventually, at a certain

critical temperature Tc, it reaches zero, which means the bar loses its magnetization.

The special value of the parameter at which the system changes its phase is the critical

point. For systems that exhibit universality, the closer the parameter is to its critical

value, the less sensitively the order parameter depends on the details of the system. The

order parameter is well approximated by

M ∼ |T − Tc|α,

where the exponent α is the critical exponent. It was found empirically that one can

partition critical systems into universality classes. In the last decade the concept of

universality class has been investigated and exploited and now it plays a central role in

probability and mathematical physics.

1.1.1 Gaussian universality class

The number of heads H in N fair coin flips is given exactly by the Binomial distri-

bution:

P(H = n) = 2−N
(
N

n

)
. (1.1)

• Law of large numbers [Bernoulli 1713]:

lim
N→∞

H

N
=

1

2
. (1.2)

• Central limit theorem [de Moivre 1733, Laplace 1812]:

lim
N→∞

P

(
H <

1

2
N +

1

2

√
Nx

)
=

∫ x

−∞

e−
y2

2

√
2π

dy. (1.3)

The proof of the central limit theorem shows some basic ideas in universality classes.

• Asymptotics of n! [de Moivre 1721, Stirling 1729]:

n! = Γ(n+ 1) =

∫ ∞

0

e−ttndt = nn+1

∫ ∞

0

enf(z)dz (1.4)

where f(z) = log z−z and the last equality is from the change of variables t = nz.

• The integral is dominated, as n grows, by the maximal value of f(z) on the interval

[0,∞]. This occurs at z = 1, thus expanding f(z) ≈ −1 − (z−1)2

2 , and plugging
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this into the integral yields the final expansion:

n! ≈ nn+1e−n
√

2π

n
(1.5)

This general route: (1.1) writing exact formulas for probabilities in terms of integrals;

(1.2) performing asymptotics analysis.

The universality of the Gaussian distribution was not demonstrated until [Lyapunov

1901].

The central limit theorem (CLT) showed that the exact nature of coin flipping is

immaterial—any sum of independent identically distributed (iid) random variables with

finite mean and variance will demonstrate the same limiting behavior.

Theorem 1.1 (central limit theorem). Let X1, X2, . . . be i.i.d random variables of finite

mean m and variance ν.Thenforallx ∈ R,

lim
N→∞

P

(
N∑
i=1

Xi < mN + ν
√
Nx

)
=

∫ x

−∞

e−
y2

2

√
2π

dy (1.6)

The above theorem has an equivalent statement.

Theorem 1.2 (central limit theorem). Let X1, X2, . . . be a sequence of independent,

identically distributed random variables with mean µ and variance σ2 < ∞. Let Sn :=∑n
k=1Xk. Then

lim
n→∞

P

(
Sn − nµ

σ
√
n

≤ s

)
=

∫ s

−∞

e−x
2/2

√
2π

dx. (1.1.2)

This means that, despite the model dependent features as the mean and the vari-

ance, any sum of i.i.d random variables with finite variance will show the same limiting

behavior, described by the normal distribution, and fluctuations around the mean value

of order n1/2. Physical and mathematical systems accurately described in terms of

Gaussian statistics are said to be in the Gaussian universality class.

Theorem 1.2 illustrates well the universal and the non-universal quantities. The

model-dependent and thus non-universal quantities are µ and σ2, while the 1/2 exponent

in the normalization as well as the normal distribution are universal.

1.1.2 Random versus ballistic deposition models

In this part we will be dealing with models related to stochastically growing inter-

faces. Let us starts with two simple models, which however shows very different limiting

behaviors.

In the random deposition model unit blocks fall independently and in parallel

on Z after an exponentially distributed waiting time of parameter 1 (see Figure 1). Due

to the memoryless property of the exponential distribution, this model is a Markov
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Figure 1: random deposition model (a)

Figure 2: random deposition model (b)

process; its evolution depends only on the present and not on the history. Each column

evolves independently and is a Poisson process.

• Exponential distribution of rate λ (mean 1
λ ): P(X > x) = e−λx.

• Memoryless (Markov), so growth depends only on the present state.

• Gaussian behavior since each column is a sum of i.i.d random variables.

Denote by h(x, t) the height function that gives the value of the height of the column

on the site x at time t. We assume that h(x, 0) = 0 for all x. Random waiting times

ωx,i: the time for the i-th block in column x to fall. For any n, the event h(t, x) < n

is equivalent to
∑n
i=1 ωx,i > t. Since the ωx,i are i.i.d, the law of large numbers and

central limit theory apply here. Assume λ = 1,

lim
t→∞

h(x, t)

t
= 1,

and
h(x, t)− t√

t

d−→ N(x).
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According to the Law of Large Numbers and the Central Limit Theorem, we know

that the random deposition model has the following properties:

• Linear growth (known speed)

• t
1
2 fluctuations with Gaussian limit (CLT)

• No spatial correlation

In general, fluctuations and transversal correlation exponents, as well as

limiting distributions constitutes the description of a universality class and all models

which match these limiting behaviors are said to lie in the same universality class.

1.1.3 Edwards-Wilkinson universality class

Compared to the random deposition model, it can be observed from the image that

the growth interface of the Edwards-Wilkinson universality class is smoother and more

stable.

• Relaxation: when a block falls over site x, it lands on either x or any of its two

nearest neighbors, whichever has the lowest height (choosing, say, uniformly in

case of ties).

• Linear growth.

• t
1
4 fluctuations with Gaussian limit (CLT).

• Spatial correlation of order t
1
2 .

• (time : space : fluctuation) is (4 : 2 : 1).

In other words, if a probabilistic model satisfies the condition (time : space :

fluctuation) = (4 : 2 : 1), it belongs to the Edwards-Wilkinson universality

class.

1.1.4 Ballistic deposition (or sticky block) model

It is enough to slightly modify the rules of the growth of the interface to lose the

Gaussian behavior. Consider the same model, but now, instead of falling on the ground
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Figure 3: ballistic deposition model (a)

Figure 4: ballistic deposition model (b)

or the interface, a new block sticks to the first edge (see Figure 3): this is known as the

ballistic deposition model, introduced by Vold in 1959. This change in the evolution rules

turns into large time effects: the interface grows faster than in the random deposition

model (the value of the velocity is still unknown) and simulations (see Figure 4) show

that the height function has smaller fluctuations, on the scale t
1
3 , and demonstrate

nontrivial correlations on the transversal scale of t
2
3 . Moreover the rescaled height does

not converge anymore to the Gaussian distribution.

Figure 5: comparison

Compared to the random deposition model, it can be observed from the image that

the growth interface of the ballistic deposition model is smoother and more stable (see

Figure 5), Different colors represent different time intervals.

Ballistic deposition model have the following properties:
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• Generally linear growth (unknown speed): t1

• Conjectural t
2
3 spatial correlation

• Conjectural t
1
3 fluctuations

• limt→∞ t−
1
3

(
h(c1t, c2t

2
3x)− c3t

)
d
= A(x) (CLT, where A corresponding to Gaus-

sian distribution in Gaussian universality and A only depends on the initial con-

dition)

• 1:2:3 KPZ scaling (fluctuation : space : time)

1.1.5 KPZ universality class

By extracting the characteristics of the Ballistic deposition model (because ballistic

deposition model is not integrable), find some similar alternative models, then prove

that those alternative models satisfy KPZ scaling, and finally use the special models to

determine the distribution A.

The ballistic deposition model is believed to belong to the Kardar-Parisi-Zhang

(KPZ) universality class. A model is in this universality class if the following properties

are satisfied:

• Locality: Height function change depends only on neighboring heights (the evolu-

tion of the height function depends only the local (in space and time) configuration

of the interface).

• Smoothing: Large valleys are quickly filled (there is a smoothing mechanism im-

plying that deep holes are rapidly filled to smooth the interface such that there

exists a non-random macroscopic limit shape)

hma(ξ, τ) = lim
t→∞

h(ξ, t, τ)

t
.

• Non-linearity of speed of growth: vertical effective growth rate depends non-

linearly on local slope (Macroscopically the growth of the interface will evolve

deterministically according to some PDE. Since the growth rules are local and

locally one will see a given slope only, one will get ∂τhma = v(u = ∇hma). In

order to be in the KPZ class, we need to have the condition v′′(u) ̸= 0. This

property implies irreversibility of the model).

• Space-time independent noise: Growth is drive by noise which quickly decorrelates

in space/time and is not heavy tailed.

The KPZ universality class was introduced in the context of studying the motion of

growing interfaces in 1986 in a paper of Kardar, Parisi, and Zhang, where they studied

8



a continuum stochastically growing height function h(x, t) given in terms of a stochastic

PDE, known as the KPZ equation:

∂h

∂t
(x, t) = ν

∂2h

∂x2
(x, t) + λ

(
∂h

∂x
(x, t)

)2

+
√
Dξ(x, t),

where ξ(x, t) is Gaussian space-time white noise, λ, ν ∈ R, D > 0 (the stationary so-

lution is formally a two-sided Brownian motion). This equation is ill-posed, since the

nonlinearity does not make sense in this case. The equation contains of course the key

features: local random growth (the noise ξ), the smoothing (from the Laplacian), the

non-linearity (from the square of the gradient).

1.1.6 Corner growth model

So far, the ballistic deposition model could not be investigated analytically, but

there is a class of systems that is integrable. For an integrable probabilistic system, it is

possible to compute concise formulas for averages of a class of observables; furthermore,

taking limits of the system, observables and formulas, it is possible to access detailed

descriptions of universal classes. We will focus on a few examples in the Kardar-Parisi-

Zhang class.

Consider an interface modeled by a height function h(x, t), x, t ∈ Z, with h(x±1, t)−
h(x, t) ∈ {−1, 1}. WLOG set h(0, 0) = 0. The height function evolves according to the

following dynamics: each local minimum turns into a local maximum after an exponen-

tially distributed waiting time of parameter 1 (see Figure 6). Particularly interesting

are the cases of two initial configurations: wedge initial condition, which means that

h(x, 0) = |x|, and flat initial condition, which means that h(x, 0) is a sawtooth function

between 0 and 1.

• Height function h(t, x): continuous, piecewise linear, and composed of
√
2-length

line increments of slope +1 or -1, changing value at integer x.

• The height function evolves according to the Markovian dynamics that each local

minimum of h (looking like ∨) turns into a local maximum (looking like ∧) ac-

cording to an exponentially distributed waiting time. This happens independently

for each minimum.

• This change in height function can also be thought of as adding boxes (rotated by

45◦).

There is also an equivalent formulation of this growth model. Project the interface

to a straight line and put ”particles” at projections of unit segments of slope -1 and

”holes” at projections of segments of slope +1 (see Figure 7 left). Now each particle

independently jumps to the right after an exponential waiting time (put it otherwise,
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Figure 6: Evolution of the height function

each particle jumps with probability dt in each very small time interval [t, t+dt]) except

for the exclusion constraint: Jumps to the already occupied spots are prohibited. This

is a simplified model of a one-lane highway which is known under the name of Totally

Asymmetric Simple Exclusion Process (TASEP), cf.

Figure 7: Broken line with slopes ±1, local minimum where a box can be added, and
correspondence with particle configurations on Z

The macroscopic limit shape for wedge initial condition is a parabola continued by

two straight lines:

hma(ξ) =

 1
2 (1 + ξ2), for |ξ| ≤ 1

|ξ|, for |ξ| ≥ 1.

Johansson proved large time results for the rescaled height function.
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Figure 8: Wedge and flat initial conditions: broken lines and corresponding particle
configurations.

Theorem 1.3 (Johansson). For wedge initial condition, for any ξ ∈ (−1, 1),

lim
t→∞

P
(
h(ξt, t)− c1(ξ)t

−c2(ξ)t1/3
≤ s

)
= F2(s),

with c1, c2 model-dependent constants.

The function F2 is known as the GUE Tracy-Widom distribution, first discovered in

random matrices. For flat initial condition the macroscopic shape is simply hma(ξ) =
1
2 .

An analogous result for the limit distribution stands also for this case.

Theorem 1.4 (Borodin-Ferrari-Prähofer-Sasamoto). For flat initial condition, for any

ξ ∈ (−1, 1),

lim
t→∞

P
(
h(ξt, t)− c3(ξ)t

−c4(ξ)t1/3
≤ s

)
= F1(2s),

with c3, c4 model-dependent constants.

Also the function F1 was first observed in the random matrix context and it is known

as GOE Tracy-Widom distribution. An interesting fact to observe is that, although the

scaling exponent are invariant, the limit distribution depends on the initial condition.

Here F1(s) and F2(s) are distributions from random matrix theory, known under

the name of Tracy-Widom distributions. They are the limiting distributions for the

largest eigenvalues in Gaussian Orthogonal Ensemble and Gaussian Unitary Ensemble

of random matrices (which are the probability measures with density proportional to

exp(−Trace(X2)) on real symmetric and Hermitian matrices, respectively).

These two theorems give the conjectural answer for the whole “universality class”
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of 2d random growth models, which is usually referred to as the KPZ (Kardar-Parisi-

Zhang) universality class. Comparing to the answer in the 1d case we see that the

asymptotic behavior becomes more delicate — while scaling by t
1
3 is always the same,

the resulting distribution may also depend on the “subclass” of our model. Also, conjec-

turally, the only two generic subclasses are the ones we have seen. They are distinguished

by whether the global surface profile is locally curved or flat near the observation loca-

tion.

1.1.7 Interacting particle systems

Totally Asymmetric Simple Exclusion Process (TASEP) model:

• KPZ fixed point (goal): temporal evolution of the interface

lim
ϵ→0

ϵ
1
2

(
h
(
c1ϵ

− 3
2 t, c2ϵ

−1x
)
− c3ϵ

− 3
2 t
)
= ĥ(t, x).

• Obstacle 1: we only know how to compute the limit for two special choices of

initial data.

• Obstacle 2: we can only do it for fixed time t.

Asymmetric simple exclusion process (ASEP) model: more generally, per-

turb the TASEP or study to what extent the TASEP model remains integrable.

p and q represent the probabilities of particles moving to the right and to the left,

respectively.

• p > q: KPZ universality class.

• p = q: Edwards-Wilkinson universality class.

• One-point distribution: GUE Tracy-Widom distribution.
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• Multi-point and multi-time distribution: KPZ fixed point.

• p− q → 0: KPZ equation.

Example 1.1. Consider the simplest particle system.

−4 −3 −2 −1 0 1 2 3 4
X(t)

p1− p

• We can associate a difference operator

∆f(x) = p f(x− 1) + (1− p)f(x+ 1),

so that

ψt(x) := P(X(t) = x)

solves

ψt+1(x) = ∆ψt(x).

• For any z ∈ C \ {0}, functions x 7→ zx are eigenfunctions. We may consider the

Fourier transform

f̂(z) =
∑
x∈Z

f(x)zx,

which can be inverted via

f(x) =
1

2πi

∮
|z|=1

f̂(z)
dz

z1+x
.

(isometry between ℓ2(Z) and L2(T, dzz ))

Recall ψ0(x) = P(X(0) = x), and consider the identity

ψ0(x) =
1

2iπ

∮
|z|=1

ψ̂0(z)
dz

z1+x
.

Acting t times with ∆ on both sides, we obtain (recall ψt+1(x) = ∆ψt(x))

P(X(t) = x) =
1

2iπ

∮
|z|=1

(
pz + (1− p)z−1

)t︸ ︷︷ ︸
eigenvalue

∑
y∈Z

zyP(X(0) = y)


︸ ︷︷ ︸

ψ̂0(z)

dz

z1+x
.

The last expression can be analyzed asymptotically using standard techniques of

asymptotic analysis for contour integrals.
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• For more complicated systems, eigenfunctions will not be as simple as zx but

typically functions of many variables z1, z2, z3, . . .

• If we have now several particles jumping on Z with at most one particle per site

and p = 1, all of this goes through, but the functions x 7→ zx are replaced by

so-called Grothendieck polynomials

Gx⃗(z1, . . . , zn) =
det
(
z
xj

i (1− 1/zi)
1−j)n

i,j=1

det
(
zn−ji

)n
i,j=1

.

q-TASEP: Consider another form of perturbation involving the deceleration mech-

anism.

• Cars slow down as they approach the one in front.

• Particles jump right according to independent exponential waiting times of rate

1− qgap.

• KPZ class fluctuation behavior: GUE Tracy-Widom distribution.

• Method 1: Macdonald processes.

• Method 2: Bethe Ansatz.

q-push ASEP: Introduce a braking mechanism.

• The cascade effect of braking.

• Particles still jump right according to q-TASEP rules; however, now particles may

also jump left after exponential rate L waiting times.
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• When such a jump occurs, it prompts the next particle to the left to likewise jump

left, with a probability given by qgap where gap is the number of empty spaces

between the original particle and its left neighbor.

1.1.8 Paths in random environment

Last passage percolation model: In the Corner Growth Model, we use the

height function to characterize the process. Now we will use waiting times to describe

this growth model.

Consider the model of growing interface just introduced starting from wedge initial

configuration. There is an alternative way to describe the evolution of the height func-

tion, by taking the time at which a box appears on a local minimum, and call this time

Ti,j for i, j ∈ N. Let indicate with wi,j the ”waiting time” for the local valley at (i, j)

to become a local maximum. Since a box can appear only once the blocks (i− 1, j) and

(i, j−1) have appeared, Ti,j must satisfy the recursive relation Ti,j = Ti−1,j∨Ti,j−1+wi,j ,

and iterating

Ti,j = max
π:(1,1)→(i,j)

∑
(k,l)∈π

wk,l

where π are all steps made of consecutive steps of (1, 0) or (0, 1). This model is called

last passage percolation with exponential weight. Another solvable model is last passage

percolation with geometric weights, namely take P(wi,j = k) = (1− q)qk for k ≥ 0. The

exponential case can be recovered by the limit q → 1 and setting

Figure 9: An example of last passage percolation

k = t/(1 − q). Another limit is obtained by letting q → 0 and choosing the unit

of i, j to be
√
2 instead of 1. If we draw one point each time that there is a wi,j = 1

(higher values will not occur in the limit), then we are left with a Poisson point process

with density 1 on R2. The paths can then be taken to taken to be directed paths which

maximizes the number of Poisson points visited. Once can reformulate the problem as

the one of finding the longest increasing subsequence of a random permutation, which

was solved by Baik, Deift and Johansson:

Theorem 1.5. Let σ be a uniformly distributed permutation of {1, . . . , n} and let ℓn(σ)
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be the length of the longest increasing subsequence. Then

lim
n→∞

P
(
ℓn(σ)− 2

√
n

n1/6
≤ s

)
= F2(s).

Here the macroscopic parameter is
√
n and the fluctuations are n1/3 = n1/6. In the

next chapter we will consider this model with P(wi,j = k) = (1 − aibj)(aibj)
k, k ≥ 0,

for arbitrary family of parameters {ai, bj} satisfying 0 < ai, bj < 1. The reason is that

having the parameters, the mathematical structure in the background is much more

visible.

Figure 10: The quadrant filled with waiting times and two (out of
(
4
1

)
= 4 possibilities)

directed paths joining (1, 1) and (4, 1).

Directed polymers in random environment

• Inverse-gamma distribution: f(x) = 1
Γ(θ)x

−θ−1e−
1
x .

• π: up/right directed lattice path from point (m1, n1) to (m2, n2).

• Partition function:

Z(m1, n1;m2, n2) =
∑

π:(m1,n1)→(m2,n2)

∏
π

ωi,j .

• Free energy log Z demonstrated KPZ class fluctuations.

• Open problem: KPZ class fluctuation persists when the distribution of the ωi,j is

arbitrary.

OPEN problem: KPZ universality class fluctuation persists when the distribution

of the wx,y is arbitrary?
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Universality considerations make one believe that the limit behavior of the Last

Passage Percolation time should not depend on the distribution of wi,j (if this distribu-

tion is not too wild), but we are very far from proving this at the moment. However,

again, the Last Passage Percolation time asymptotics has been computed for certain

distributions, e.g. for the exponential distribution.

Figure 11: The Poisson point process in the first quadrant and a North-East path joining
(0, 0) and (θ, θ) and collecting maximal number of points, which is 5 here.

The Hammersley Process:

• Degenerate LPP problem.

• Density 1 Poisson point process.

• Hammersley problem: what is the maximum number of Poisson points that

can be collected by going from (0, 0) to (N,N) via an up-right path?

Compact set A ⊂ R2
≥0, let NA be the number of particles falling in the set A.

• NA has the Poisson distribution with parameter |A|, the area of |A|. That is

P (NA = n) = e−|A| |A|n
n! , n = 0, 1, 2, . . ..

• If A1, . . . , Ak are pairwise disjoint compact sets, then the corresponding random

variables NA1 , . . . , NAk
are independent.

Let us present another example, where the (conjecturally, universal) result can be

rigorously proven. Consider the homogeneous, density 1 Poisson point process in the

first quadrant, and let L(θ) be the maximal number of points one can collect along a

North-East path from (0, 0) to (θ, θ) (as shown at Figure 11).

This quantity can be seen as a limit of the LPP times when wi,j takes only two

values 0 and 1, and the probability of 1 is very small. Such considerations explain that

L(θ) should be also in the KPZ universality class. And, indeed, this is true.

Longest Increasing subsequences in a random permutation

• The Hammersley Process can be translated to: ”The number of non-intersecting

broken lines that can be selected in the chosen region.
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• Order the horizontal and vertical coordinates of the Poisson points and write the

coordinates (x, y) of each point in the form of a biletter
(
x
y

)
• The coordinates here depends only on the order of appearance and is independent

of the Cartesian coordinate system and distances.

• Example: (
1 2 3 4 5 6 7 8 9 10

1 9 2 4 7 5 6 10 3 8

)
(1.7)

• The Hammersley Process (red line) corresponds to the longest increasing subse-

quence in the sequence of y coordinates.

Robinson-Schensted correspondence: geometric description

The purpose is to find a pair of Young diagrams that correspond one-to-one with

the permutation (1.7).

The red points are the intersections where the black points emit rays upward and

to the right, while the blue points are the focal points of the rays emitted by the red

points, and so on.

Example 1.2. The random variable ℓn has an interesting interpretation in terms of an

airplane boarding problem. Imagine a simplified airplane with one seat in each of n rows,

large distances between rows, and one entrance in front. Each entering passenger has

a ticket with a seat number, but the order of passengers in the initial queue is random

(this is our random permutation). Suppose that each passenger has a carry-on, and it

takes one minute for that person to load it into the overhead bin as soon as (s)he reaches

her/his seat. The aisle is narrow, and nobody can pass the passenger who is loading the
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carry-on. It turns out that the total time to board the airplane is precisely ℓn. Let us

demonstrate this with an example.

Consider the permutation σ = 2413 with ℓσ = 2. The airplane boarding looks as

follows: The first passenger enters the airplane and proceeds to the seat number 2.

While (s)he loads a carry-on, the other passengers stay behind and the one with the

ticket for the seat number 1 ((s)he was the third person in the original queue) starts

loading her/his carry-on. After one minute, the passenger with the ticket for the seat

number 4 proceeds to his seat and also starts loading, as well as the one aiming for the

seat number 3. In two minutes the boarding is complete.

Interestingly enough, if the queue is divided into groups, as often happens in reality,

then the boarding time (for long queues) will only increase by the factor
√
k, where k is

the number of the groups.

Let us now proceed to more recent developments. In the Last Passage Percolation

problem we were maximizing a functional H(x) over a set X . A general statistical

mechanics principle says that such a maximization can be seen as zero-temperature

limit of the Gibbs ensemble on X with Hamiltonian −H(x). More formally, we have

the following essentially obvious statement

max
x∈X

H(x) = lim
β→∞

1

β
ln
∑
x∈X

eβH(x).

The parameter β is usually referred to as the inverse temperature in the statistical

mechanics literature.

In the Last Passage Percolation model, X is the set of all directed paths joining (1, 1)

with a point (a, b), and the value of H on path x is the sum of w(i,j) along the path x.

The Gibbs ensemble in this case is known under the name of a ”Directed Polymer in

Random Media”. The study of such objects with various path sets and various choices

of noise (i.e. w(i,j)) is a very rich subject.

Directed Polymers in Random Media appeared for the first time close to thirty years

ago in an investigation of low temperature expansion of the partition function of the

Ising model with domain wall boundary conditions, but nowadays there are many other

physical applications. Let us give one concrete model where such polymers arise.

Consider a set of massive particles in Z that evolve in discrete time as follows. At

each time moment the mass of each particle is multiplied by a random variable dt,x,

where t is the time moment and x is the particle’s position. Random variables dt,x are

typically assumed to be i.i.d. Then each particle gives birth to a twin of the same mass

and the twin moves to x + 1. If we now start at time 0 with a single particle of mass

1 at x = 1, then the mass Z(T, x) of all particles at x at time T can be computed as a

sum over all directed paths (1, 1) = b[1] → b[2] → . . . b[x+ T − 1] = (T, x) joining (1, 1)
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and (T, x):

Z(T, x) =
∑

(1,1)=b[1]→b[2]→...b[x+T−1]=(T,x)

x+T−1∏
k=1

db[k]. (1.8)

This model can be used as a simplified description for the migration of plankton

with dt,x representing the state of the ocean at location x and time t which affects the

speed of growth of the population. Independent dt,x model quickly changing media, e.g.

due to the turbulent flows in the ocean.

Random Polymers in Random Media exhibit a very interesting phenomenon called

intermittency which is the existence of large peeks happening with small probability,

that are high enough to dominate the asymptotics of the moments. Physicists believe

that intermittency is widespread in nature and, for instance, the mass distribution in

the universe or a magnetogram of the sun show intermittent behavior. To see this

phenomenon in our model, suppose for a moment that dt,x does not depend on t. Then

there would be locations where the amount of plankton exponentially grows, while in

other places all the plankton quickly dies, so we see very high peaks. Now it is reasonable

to expect that such peaks would still be present when dt,x are independent both of t and

x and this will cause intermittency. Proving and quantifying intermittency is, however,

rather difficult.

Regarding the distribution of Z(T, x), it was long believed in the physics literature

that it should belong to the same KPZ universality class as the Last Passage Percola-

tion. Now, at least in certain cases, we can prove it. The following integrable random

polymer was introduced and studied by Seppäläinen [Seppäläinen-12] who proved the

t1/3 exponent for the fluctuations. The next theorem is a refinement of this result.

Theorem 1.6 (Borodin-Corwin-Remenik). Assume dt,x are independent positive ran-

dom variables with density
1

Γ(θ)
x−θ−1 exp

(
− 1

x

)
.

Then there exist θ∗ > 0 and (explicit) c1, c2 > 0 such that for 0 < θ < θ∗,

lim
n→∞

P
(
Z(n, n)− c1n

c2n1/3
≤ s

)
= F2(s).

The upper bound on the parameter θ > 0 in this theorem is technical and it will

probably be removed in future works.

1.1.9 Examples and applications

In a similar way to our transition from Last Passage Percolation to monotone paths

in a Poisson field and longest increasing subsequences, we can do a limit transition

here, so that discrete paths in (1.8) turn into Brownian bridges, while dt,x turn into

the space–time white noise. Let us explain in more detail how this works as this will
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provide a direct link to the Kardar–Parisi–Zhang equation that gave the name to the

KPZ universality class.

For a Brownian bridge B = B(s) we obtain a functional

H(B) =

∫
βẆ (s,B(s))ds,

where Ẇ is the 2d white noise. Thus, the partition function Z(t, x) has the form

Z(t, x) = 1√
2πt

exp
(
−x2

2t

)
E (: exp : (H(B))) , where E is the expectation with respect

to the law of the Brownian bridge which starts at 0 at time 0 and ends at x at time

t, and : exp : is the Wick ordered exponential and references therein for more details.

Note that the randomness coming from the white noise is still there, and Z(t, x) is a

random variable.

Another way of defining Z(t, x) is through the stochastic PDE it satisfies:

∂

∂t
Z(t, x) =

1

2

(
∂

∂x

)2

Z(t, x) + ẆZ. (1.9)

This is known as the stochastic heat equation. Indeed, if we remove the part with the

white noise in (1.9), then we end up with the usual heat equation.

If the space (corresponding to the variable x) is discrete, then an equation similar

to (1.9) is known as the parabolic Anderson model; it has been extensively studied for

many years.

Note that through our approach the solution of (1.9) with δ-initial condition at time

0 is the limit of discrete Z(t, x) of (1.8) and, thus, we know something about it.

If we now define U through the so-called Hopf–Cole transformation

Z(x, t) = exp(U(x, t)),

then, as a corollary of (1.9), U formally satisfies

∂

∂t
U(t, x) =

1

2

(
∂

∂x

)2

U(t, x) +

(
∂

∂x
U(t, x)

)2

+ Ẇ . (1.10)

which is the non-linear Kardar–Parisi–Zhang (KPZ) equation introduced in [Kardar-

Parisi-Zhang-86] as a way of understanding the growth of surfaces we started with (i.e.

ballistic deposition), for a nice recent survey.

Due to the non-linearity of (1.10), it is tricky even to give a meaning to this equation,

but physicists still dealt with it and that’s one way how the exponent 1
3 of t

1
3 was

predicted.

If we were to characterize the aforementioned results in one phrase, we would use

“integrable probability”. “Integrable” here refers to explicit formulas that can be de-
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rived, and also hints at parallels with integrable systems. There are direct connections,

e.g. y(s) defined via

y2(s) = −(lnF2(s))
′′,

solves the (nonlinear) Painlevé II differential equation

y′′(s) = sy(s) + 2y(s)3.

Also if we define F (x1, . . . , xn; t) = E(Z(x1, t) · · ·Z(xn, t)), where Z(t, x) is the solution
of Stochastic Heat Equation (1.9), then

∂

∂t
F =

1

2

 n∑
i=1

(
∂

∂xi

)2

+
∑
i ̸=j

δ(xi − xj)

F, (1.11)

where δ is the Dirac delta function. (1.11) is known as the evolution equation of the

quantum delta-Bose gas. It was the second quantum many body system solved via

Bethe ansatz.

There is also a deeper analogy: Both integrable systems and integrable probability

models can be viewed as shadows of representation theory of infinite-dimensional Lie

groups and algebras. However, while integrable PDEs often represent rather exotic be-

havior from the point of view of general PDEs, integrable probability delivers universal

behavior for the whole universality class of similar models. Moreover, in the rare occa-

sions when the universality can be proved , one shows that the generic behavior is the

same as in the integrable case. Then the integrable case provides the only known route

to an explicit description of the answer.

The followings are two models in random matrices theory

Theorem 1.7 (Gaussian Unitary Ensemble). The Gaussian Unitary Ensemble (GUE)

of random matrices consists of Hermitian matrices H of size N×N distributed according

to the probability measure

pGUE(H)dH =
1

ZN
exp

(
− 1

2N
Tr(H2)

)
dH,

where dH =
∏N
i=1 dHi,i

∏
1≤i<j≤N dRe(Hi,j)dIm(Hi,j) is the reference measure and

ZN the normalization constant. Denote by λGUEN,max the largest eigenvalue of a N × N

GUE matrix. Then Tracy and Widom proved that the asymptotic distribution of the

(properly rescaled) largest eigenvalue is F2 :

lim
n→∞

P

(
λGUEN,max − 2N

N1/3
≤ s

)
= F2(s).

Theorem 1.8 (Gaussian Orthogonal Ensemble). The Gaussian Orthogonal Ensemble
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(GOE) of random matrices consists of symmetric matrices H of size N ×N distributed

according to the probability measure

pGOE(H)dH =
1

ZN
exp

(
− 1

4N
Tr(H2)

)
dH,

where dH =
∏

1≤i≤j≤N dHi,j is the reference measure and ZN the normalization con-

stant. Denote by λGOEN,max the largest eigenvalue of a N×N GOE matrix. The asymptotic

distribution of the (properly rescaled) largest eigenvalue is F1:

lim
n→∞

P

(
λGOEN,max − 2N

N1/3
≤ s

)
= F1(s).

1.2 Gaussian unitary ensemble: the eigenvalue point process

All information concerning the distribution of eigenvalues in any of the classical

ensembles (GOE, GUE, Wishart) is encoded in the joint densities, for which we have

obtained explicit formulas. Unfortunately, getting information out of the joint density

requires integration, and many of the integrals that arise cannot be evaluated in any

nice closed form. Nevertheless, it is possible to show that as the size N of the ensemble

becomes large, certain interesting functions of the eigenvalues – for instance, the maxi-

mum – have (after suitable re-centering and re-scaling) limit distributions. The unitary

ensembles are easier to handle than the orthogonal ones, so we will limit our attention

to these (at least for now). To be definite, we will focus on the GUE, for which the joint

distribution of the eigenvalues λi, listed in random order, is

P{λi ∈ dλi for i ≤ N} = CN∆N (χ)2 exp
(
−||χ||2/2

) N∏
i=1

dχi = CN∆N (χ)2
N∏
i=1

dµ(χi)

(1.12)

where µ is the standard normal distribution on R and

CN =
1

(2π)N/2N !
∏N
j=1[j!

−1]
. (1.13)

Our aim is to study the asymptotic behavior of the spectrum of certain random

matrices

1.2.1 Wigner Matrices

Definition 1.1 (real Wigner matrices). For 1 ≤ i < j < ∞ let Xi,j be i.i.d. (real)

random variables with mean 0 and variance 1 and set Xj,i = Xi,j. Let Xi,i be i.i.d.

(real) random variables (with possibly a different distribution) with mean 0 and variance

1. Then Mn = [Xi,j ]
n
i,j=1 will be a random n× n symmetric matrix.
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Definition 1.2 (complex Wigner matrices). For 1 ≤ i < j < ∞ let Xi,j be i.i.d.

(complex) random variables with mean 0, E|Xi,j |2 = 1 and set Xj,i = Xi,j. Let Xi,i be

i.i.d. (real) random variables with mean 0 and variance 1. Then Mn = [Xi,j ]
n
i,j=1 will

be a random n× n hermitian matrix.

In both cases there are n random eigenvalues which we will denote by

λ1 ≤ λ2 ≤ . . . λn.

(We will denote the dependence on n). Fact (which we will prove later): these are

continuous functions of Mn hence they are random variables themselves.

We would like to study the scaling limit of the empirical spectral measure

ν∗n =
1

n

n∑
i=1

δλi
.

This is a random discrete probability measure which puts n−1 mass to each (random)

eigenvalue. The following picture shows the histogram of eigenvalues for a certain

200× 200 Wigner matrix.

The picture suggests that there is a nice deterministic limiting behavior. In order

to figure out the right scaling, we first compute the order of the empirical mean and

second moment of the eigenvalues.

1

n

n∑
i=1

λi =
1

n
TrMn =

1

n

n∑
i,j=1

Xi,j

1

n

n∑
i=1

λ2i =
1

n
TrM2

n =
1

n

n∑
i,j=1

X2
i,j

The first moment converges to 0 by the strong law of large numbers. However the

second moment is of O(n) as we have about n2/2 independent terms in the sum with a

normalization of 1
n instead of 1

n2 . This suggests that in order to see a meaningful limit,

we need to scale the eigenvalues (or the matrix) by 1√
n
.

The following theorem states that in case we indeed have a deterministic limit.
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Theorem 1.9 (Wigner’s semicircle law). Let

νn =
1

n

n∑
i=1

δλi/
√
n

be the normalized empirical spectral measure. Then as n→ ∞ we have

νn ⇒ ν a.s.

where ν has density
dν

dx
=

1

2π

√
4− x2 1{|x|≤2}.

(There will be some assumptions on the distribution of the random entries of Mn, . . .)

1.2.2 Gaussian Ensembles

We also discussed some special Wigner matrix models.

Definition 1.3 (GOE). Consider a real Wigner matrix where Xi,j ∼ N(0, 1) and

Xi,i ∼
√
2N(0, 1). The resulting random matrix model is called Gaussian Orthogonal

Ensemble (or GOE). Another construction: let ai,j , i, j ∈ Z be i.i.d. standard normals

and An = [ai,j ]
n
i,j=1. (Note that this is not a symmetric matrix!). Then the distribution

of Mn =
An+A

T
n√

2
is GOE.

It is easy to check the following useful fact: if C ∈ Rn×n is orthogonal (i.e. CCT = I)

the CTMnC has the same distribution as Mn. (The GOE is invariant to orthogonal

conjugation.) It is a bit harder (we will prove it later) that one can actually compute

the joint eigenvalue density which is given by

f(λ1, . . . , λn) =
1

Z1

∏
i<j

|λj − λi|e−
1
4

∑n
i=1 λ

2
i .

Here Z1 is an explicitly computable normalizing constant (which also depends on n).

Definition 1.4 (GUE). Consider a complex Wigner matrix where Xi,j is standard

complex Gaussian (i.e. Xi,j ∼ N(0, 12 ) + iN(0, 12 )) and Xi,i ∼ N(0, 1) (real). The

resulting random hermitian matrix model is called Gaussian Unitary Ensemble (or

GUE). Another construction: let ai,j , i, j ∈ Z be i.i.d. standard complex Gaussians

and An = [ai,j ]
n
i,j=1. (Note that this is not a symmetric matrix!). Then the distribution

of Mn =
An+A

∗
n√

2
is GUE.

As the name suggests, GUE is invariant under unitary conjugation. If C ∈ Cn×n is

unitary (i.e. CC∗ = I) the CTMnC has the same distribution as Mn. (We will later
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show that the joint eigenvalue density is given by

f(λ1, . . . , λn) =
1

Z2

∏
i<j

|λj − λi|2e−
1
2

∑n
i=1 λ

2
i .

Here Z2 is an explicitly computable normalizing constant (which also depends on n).

One can see the similarity between the two densities: they are contained in the

following one-parameter family of densities:

f(λ1, . . . , λn) =
1

Zβ

∏
i<j

|λj − λi|βe−
β
4

∑n
i=1 λ

2
i .

For a given β > 0 the resulting distribution (on ordered n-tuples in R) is called

Dyson’s β-ensemble. For β = 1 one gets the eigenvalue density of GOE, for β = 2 we

get the GUE. The β = 4 case is also special: it is related another classical random

matrix model, the Gaussian Symplectic Ensemble (GSE), which can be defined using

quaternions.

For other values of β there are no ’nice’ random matrices in the background. (We will

see that one can still build random matrices from which we get the general β-ensemble,

but they won’t have such nice symmetry properties.)

Later in the semester we will show that if one scales the β ensembles properly

(’zooming in’ to see the individual eigenvalues near a point) then one gets a point

process limit. The limiting point process is especially nice in the β = 2 case (GUE). It

is conjectured that its distribution appears among the critical line zeros of the Riemann-

ζ function.
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