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Abstract

This article consists of some notes taken by the author while studying algebraic

information theory.
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1 Introduction

1.1 Entropies and their algebraic characterization.

Shannon [3] defined the information content of a random variable X, taking values

in a finite set EX , by the formula

S1[X](P ) := −
∑
x∈EX

P (X = x) logP (X = x), (1.1)

where P denotes a probability measure (law) on EX . The function S1 is called (Gibbs-

Shannon) entropy, and quantifies the uncertainty of a measurement.
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Given two random variables X and Y , valued respectively in sets EX and EY , their
joint measurement (X,Y ) is also random variable, valued in EXY ⊂ EX × EY . The

probability of observing X = x is computed as the sum of all the outputs of (X,Y ) that

contain x in the first component: X∗P (x) := P (X = x) =
∑

(x,y)∈EXY
P (x, y). The

probability X∗P on EX is called marginal law. Instead of measuring directly (X,Y )

one could measure first X, which constitutes a first random choice; the uncertainty

that remains after obtaining the result X = x0 is represented by the conditional

probability lawP |X=x0
: EXY → [0, 1], given by

P |X=x0
(x, y) :=


P (x,y)

X∗P (x0)
if x = x0

0 otherwise
,

provided X∗P (x0) > 0 (it remains undefined for x0 in the maximal X∗P -null set).

The function S1 satisfies the so-called chain rule

S1[(X,Y )](P ) = S1[X](X∗P ) +
∑
x∈EX

X∗P (x)>0

X∗P (x)S1[Y ](X∗P |X=x) (1.2)

Evidently, if the measurement of Y is performed first, we obtain another equation,

that corresponds to

S1[(X,Y )](P ) = S1[Y ](Y∗P ) +
∑
y∈EY

Y∗P (y)>0

Y∗P (y)S1[X](X∗P |Y=y) (1.3)

Shannon [3] gave an algebraic characterization of

Hn : ∆n → R, (p0, ..., pn) 7→ −
n∑

i=0

pi log pi

as the only family of continuous functions that satisfies the chain rule, for arbitrary pairs

(X,Y ), setting S1[X] = H|EX | and so on—and such that Hn(1/n, ..., 1/n) is monotonic

in n.

In the same vein, if the product (X,Y ) is nondegenerate (see below), then the

system of functional equations (1.2)-(1.3), with measurable unknowns S1[X], S1[Y ],

and S1[(X,Y )], is uniquely solved by the corresponding Shannon entropies (1.1), up to

a multiplicative constant.

More importantly, the chain-rule-like functional equations (1.2)-(1.3) accept a coho-

mological interpretation. Let us define, for any probabilistic functional P 7→ f(P ), a

new functional X.f given by
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(X.f)(P ) :=
∑
x∈EX

X∗P (X)f(Y∗P |X=x).

in order to rewrite (1.2) as

0 = X.S1[Y ]− S1[(X,Y )] + S1[X]. (1.4)

The notation is meant to suggest an action of random variables on probabilistic

functionals, and in fact the equality Z.(X.f) = (Z,X).f holds. There is an strong

resemblance between (1.4) and a cocycle equation in group cohomology. Baudot and

Bennequin [2] formalized this analogy introducing an adapted cohomology theory—

information cohomology—through an explicit differential complex that recovered the

equations (1.4) as 1-cocycle conditions. They used presheaves, exploiting a notion of

locality specific to the problem: the entropy of a variable X only depends on the

marginalized version X∗P of any global law P .

1.2 Categories of observables

Information cohomology was introduced in [2] considering presheaves on informa-

tion structures, that were either categories of partitions of a given measurable space or

categories of orthogonal decompositions of a Hilbert space. The partitions corresponded

to atoms of the σ-algebras generated by measurable functions (classical observables)

with finite range, and the orthogonal decompositions appeared as eigenspaces of self-

adjoint operators (quantum observables) with finitely many different eigenvalues.

We wanted to approach measurements from a categorical viewpoint, describing di-

rectly the relations between their outputs and without presupposing the existence of an

underlying probability space or Hilbert space. A probability space is only necessary to

represent a collection of observables by measurable functions with a common domain,

as customary in “classical” probability theory (as opposed to “quantum”). The sets of

outputs can also be interpreted as the spectra of self-adjoint operators, in such a way

that some contextual collections have quantum representations.

In view of the foregoing, we introduce here a more general definition of information

structure, that covers the classical and quantum cases at the same time and extends

without modification to continuous random variables. This allows us to introduce a

category of information structures and to treat the algebraic aspects of the theory in

a unified manner, once for all these cases. To attain this flexibility and generality, the

definition decouples the combinatorial structure of joint measurements and the local

models of the outputs of each individual measurement.

Let Meassurj be the category of measurable spaces and measurable surjections be-

tween them.
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Definition 1.1 (conditional meet semilattice is a poset). A conditional meet semilattice

is a poset that satisfies the following property:

for any X,Y, Z ∈ ObS, if Z → X and Z → Y , then the categorical product X ∧ Y
exists.

It is unital whenever it has a terminal object, denoted ⊤.

Definition 1.2 (information structure). An information structure is a pair (S,M),

where S is a unital conditional meet semilattice and M : S → Meassurj is a

functor (sayM(X) =MX = (EX ,BX), for each X ∈ ObS) that satisfies:

1. E⊤ ∼= {∗}, with the trivial σ-algebra;

2. for every X ∈ ObS and any x ∈ EX , the σ-algebra BX contains the singleton

{x};

3. for every diagram X
π←− X ∧ Y σ−→ Y the measurable map

MX∧Y ↪→MX ×MY , z 7→ (x(z), y(z)) := (Mπ(z),Mσ(z))

is an injection.

The objects of the conditional meet semilattice S stand for observables and the

arrows encode the relation of refinement between them (think of refinements of σ-

algebras or orthogonal decompositions). The terminal object is “certainty”, the meet

X∧Y represents the joint measurement ofX and Y , and condition of categorical product

accommodates the impossibility of doing some joint measurements. For instance, in

quantum mechanics, it is only possible to jointly measure X and Y if they commute, in

which case the observable (X,Y ) induces an orthogonal decomposition of the Hilbert

space that refines the decompositions induced by X and Y . In turn, the functor M
represents the possible outputs of each observable. A refinement π : X → Y translates

into a surjection π∗ ≡ Mπ : MX → MY that induces an injection at the level of

the algebras of events π∗ : BY → BX that maps A to Mπ−1(A), compare with the

extensions of probability spaces. The set EX∧Y represents the possible outputs of the

joint measurement X ∧ Y , hence it can be identified with a subset of EX × EY . When

convenient, we use the notations common in probability theory: {X = x} means “the

element x contained in EX” and {X = x, Y = y} should be interpreted as the element

z of EX∧Y mapped to x by EX∧Y → EX and to y by EX∧Y → EY (if such z does not

exist, {X = x, Y = y} = ∅).

Probability laws come as a functor P : S→ Sets that associates to each X ∈ ObS

the set PX of measures P on MX such that P (EX) = 1. Each arrow π : X → Y

induces a measurable surjectionM :MX →MY , and Pπ : PX → PY is defined to
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be the push-forward of measures: for every B ∈ BY ,

(Pπ(P ))(B) = P (Mπ−1(B)).

This operation is called marginalization. We write π∗ or Y∗ instead of Pπ, if there

is no risk of ambiguity; this notation is compatible with that of previous subsection.

1.3 An example: simplicial information structures

Example 1.1. If I is any set, let ∆(I) be the poset of its finite subsets, with an arrow

A→ B whenever B ⊂ A. A simplicial subcomplex of ∆(I) is a full subcategory K such

that, for any given object of K (“a cell”), all its subsets are also objects of K (“faces”).

Given a collection {(Ei,Bi)}i∈I of masurable spaces, let M : ∆(I) →Meassurj be the

functor that associates to each A ⊂ I the set EA :=
∏

i∈A Ei with the product σ-algebra

BA :=
⊗

i∈A Bi, and to each arrow in ∆(I) the corresponding canonical projector. The

pair (K,M|K) is a simplicial information structure.

2 The category of information structures

2.1 Terminology and examples

Here we call random variables (r.v) on a finite set Ω congruent when they define the

same partition (remind that a partition of Ω is a family of disjoint non-empty subsets

covering Ω and that the partition associated to a r.v X is the family of subsets Ωx ⊂ Ω

defined by the equations X(ω) = x).

Let Ω be a finite set, the set Π(Ω) of all partitions of Ω constitutes a category with

one arrow Y → Z from Y to Z when Y is more fine than Z, we also say in this case

that Y divides Z.

In Π(Ω) we have an initial element, which is the partition by points, denoted ω

and a final(terminal) element, which is Ω itself and is denoted by 1.

The joint partition Y Z or (Y, Z), of two partitions Y, Z of Ω is the less fine partition

that divides Y and Z, i.e., their gcd.

For any X we get XX = X, ωX = ω and 1.X = X, which implies each partition is

idempotent.

From above properties of the partitions, we can strictly give the definition of infor-

mation structure.

Definition 2.1 (Partially ordered set). A reflexive, weak or non-strict partial

order commonly referred to simply as a partial order, is a homogeneous relation ≤
on a set P that is reflexive, antisymmetric, and transitive. That is, for all a, b, c ∈ P ,
it must satisfy:
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1. Reflexivity: a ≤ a, i.e. every element is related to itself.

2. Antisymmetry: if a ≤ b and b ≤ a then a = b, i.e. no two distinct elements

precede each other.

3. Transitivity: if a ≤ b and b ≤ c then a ≤ c.

Definition 2.2 (meet-semilattice). A set S partially ordered by the binary relation ≤
is a meet-semilattice if for all elements x and y of S, the greatest lower bound of the

set {x, y} exists.
The greatest lower bound of the set {x, y} is called the meet of x and y, denoted

x ∧ y.

Replacing ”greatest lower bound” with ”least upper bound” results in the dual

concept of a join-semilattice. The least upper bound of {x, y} is called the join of x

and y, denoted x ∨ y.
By definition an information structure S on Ω is a subset of Π(Ω), such that

for any element X of S, and any pair of elements Y, Z in S that X refines, the joint

partition Y Z also belongs to S. In addition we will always assume that the final partition

1 belongs to S. In terms of observations, it means that at least something is a certitude.

Definition 2.3 (conditional meet semilattice is a poset). A conditional meet semilattice

is a poset that satisfies the following property:

for any X,Y, Z ∈ ObS, if Z → X and Z → Y , then the categorical product X ∧ Y
exists.

It is unital whenever it has a terminal object, denoted ⊤.

Definition 2.4 (information structure). An information structure is a pair (S,M),

where S is a unital conditional meet semilattice and M : S → Meassurj is a

functor (sayM(X) =MX = (EX ,BX), for each X ∈ ObS) that satisfies:

1. E⊤ ∼= {∗}, with the trivial σ-algebra;

2. for every X ∈ ObS and any x ∈ EX , the σ-algebra BX contains the singleton

{x};

3. for every diagram X
π←− X ∧ Y σ−→ Y the measurable map

MX∧Y ↪→MX ×MY , z 7→ (x(z), y(z)) := (Mπ(z),Mσ(z))

is an injection.

An information structure (S,M) is said to be bounded if the poset S has finite

height. It is finite if all the sets EX are finite, in which case EX corresponds to the

atoms of BX and the algebra can be omitted from the description. We denote a finite
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structure by (S,E ), where E is a covariant functor from S to Sets. The cohomological

computations concern finite structures, but the general constructions do not require this

hypothesis. In fact, they only depend on the combinatorial object S.

Example 2.1. Start with a set Σ = {Si; 1 ≤ i ≤ n} of partitions of Ω. For any

subset I = {i1, ..., ik} of [n] = {1, ..., n}, the joint (Si1 , ..., Sik), also denoted SI , divides

each Sij . The set W = W (Σ) of all the SI , when I describes the subsets of [n] is an

information struture. It is even a commutative monoid, because any product of elements

of W belongs to W , and the partition associated to Ω itself gives the identity element

of W . The product S[n] of all the Si is maximal; it divides all the other elements. As

Π(Ω) the monoid W (Σ) is idempotent, i.e., for any X we have XX = X.

Example 2.2 (Concrete structures). Given a set Ω, let Obsfin(Ω) be the category

finite observables; the objects of this category are finite partitions of Ω, and there is

an arrow X → Y whenever X refines Y . In this case, X discriminates better between

the configurations w ∈ Ω. The category Obsfin(Ω) has a terminal object: the trivial

partition ⊤ := {Ω}. When Ω is finite, it also has an initial object: the partition by

points, that we denote by ⊥. The categorical product X × Y of two partitions X and

Y is the coarsest partition that refines both. This product is commutative, associative,

idempotent and unitary (⊤×X = X).

A classical information structure in the sense of [2] is a full subcategory S of

Obsfin(Ω) such that

• ⊤ ∈ ObS;

• for any X,Y, Z in ObS, if X → Y and X → Z, then Y × Z belongs to S.

We call S a concrete structure. If □ : Obsfin(Ω)→ Sets denotes the “forgetful”

functor that maps the partition X = {A1, ..., An} to the set {A1, ..., An} and each

arrow X → Y in Obsfin(Ω) to the unique surjective map □π : EX → EY such that

B =
⋃

A∈Eπ−1(B)
A for any B ∈ EY , the pair (S,□) is a finite information structure

according to the definition of information structure.

Concrete structures turn out to be too restrictive. For instance, Baudot and Ben-

nequin [2] associate to any finite indexed collection Σ = (S1, ..., Sn) of partitions of Ω

a simplicial structure S(K): a subcategory of Obsfin(Ω) that contains
∏

i∈A Si for

any object A of a simplicial subcomplex K of the abstract simplex ∆({1, ..., n}); by

convention, the empty product gives the trivial partition. Such construction does not

necessarily give an information structure (in their sense). For example: if n = 3,

Ω = {0, 1}2, Si is the partition induced by the projection on the i-th component

(i = 1, 2), S3 = {{(0, 0)}, {(0, 1)}}, and the maximal cells of K are {1, 2} and {3}, then
S1 × S2 is the atomic partition, that refines all the others, while some products (like

S1 × S3) are not in S(K). In our framework, the category S(K) appears as a classical
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representation of the (generalized) information structure (K,E ), where E : K → Sets

is given by E{1} = E{2} = {0, 1}, E{1,2} = E{1} × E{2}, the maps induced by the arrows

in K being canonical projections.

Example 2.3 (Homogeneous structures). Let G be a locally compact, Hausdorff topo-

logical group. Any collection C of closed subgroups of G that contains G and is condi-

tionally closed under intersections (i.e. for any M,N,O ∈ C, if N ⊂ M and N ⊂ O,

then M ∩ O ∈ C) defines a conditional meet semilattice S, whose arrows correspond to

inclusions. Let M be the functor that associates to each subgroup N the (Hausdorff)

quotient space G/N with the Borel σ-algebra induced by the quotient topology, and to

each arrow N → M the canonical projection πM,N : G/N → G/M that sends the

coset gN to gM . The information structures (S,M) obtained in this way are called

homogeneous, because each coset space G/M is a homogeneous space for G.

2.2 Idempotent monoids and sheaf theory

Definition 2.5. A monoid (M, ·, e) is idempotent if for all m ∈M , m ·m = m.

Any conditional meet semilattice S induces a presheaf of idempotent monoids on

it: for each X ∈ ObS, set IX := {Y ∈ ObS | X → Y }, with the monoid structure

given by the product of observables in S: (Z, Y ) 7→ ZY := Z ∧ Y ; an arrow X → Y in

S induces an inclusion IY ↪→ IX .

Definition 2.6 (presheaf). Let X be a topological space. A presheaf of groups F
on X is a function which assigns to every open set U ⊂ X a group F(U) and to every

inclusion V ⊂ U a restriction map,

ρUV : F(U) −→ F(V ),

which is a group homomorphism, such that if W ⊂ V ⊂ U , then

ρVW ◦ ρUV = ρUW .

Succinctly put, a pre-sheaf is a contravariant functor from Top(X) to the category

(Groups) of groups. Put this way, it is clear what we mean by a presheaf of rings, etc.

The elements of F(U) are called sections. We almost always denote ρUV (s) = s|V . Uij

denotes Ui ∩ Uj .

Example 2.4. Let X be a topological space and let G be a group. Define a presheaf G
as follows. Let U be any open subset of X. G(U) is defined to be the set of constant

functions from X to G. The restriction maps are the obvious ones.

Definition 2.7 (sheaf). A sheaf F on a topological space is a presheaf which satisfies

the following two axioms.
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1. Given an open cover Ui of U an open subset of X, and a collection of sections si

on Ui, such that si|Uij = sj |Uij then there is a section s on U such that s|Ui = si.

2. Given an open cover Ui of U an open subset of X, if s is a section on U such that

s|Ui
= 0, then s is zero.

Note that we could easily combine axioms (1) and (2) and require that there is a

unique s, which is patched together from the si. It is very easy to give lots of examples

of sheaves and presheaves. Basically, any collection of functions is a sheaf.

Example 2.5. Let M be a complex manifold. Then there are a collection of sheaves

on M . The sheaf of holomorphic functions, the sheaf of C∞-functions and the sheaf of

continuous functions. In all cases, the restrictions maps are the obvious ones, and there

are obvious inclusions of sheaves.

Given a variety X, the sheaf of regular functions is a sheaf of rings.

Note however that in general the presheaf defined in example 2.4 is not a sheaf. For

example, take X = {a, b} to be the topological space with the discrete topology and

take G = Z. Let U1 = {a} and U2 = {b} and suppose s1 = 0 and s2 = 1. Then there is

no global constant function which restricts to both 0 and 1.

However this is easily fixed. Take F to be the sheaf of locally constant functions.

Definition 2.8 (stalk). Let X be a topological space and let F be a presheaf on X. Let

p ∈ X. The stalk of F at p, denoted Fp, is the inverse limit

lim
←−−
p∈U

F(U).

It is useful to untwist this definition. An element of the stalk is a pair (s, U), such

that s ∈ F(U), modulo the equivalence relation,

(s, U) ∼ (t, V )

if there is an open subset W ⊂ U ∩ V such that

s|W = t|V .

In other words, we only care about what s looks like in an arbitrarily small neigh-

bourhood of p. Note that when we have a sheaf of rings, the stalk is often a local

ring.

Definition 2.9. A map between presheaves is a natural transformation of the corre-

sponding functors.

Untwisting the definition, a map between presheaves

f : F −→ G
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assigns to every open set U a group homomorphism

f(U) : F(U) −→ G(U),

such that the following diagram always commutes

F(U) G(U)

F(V ) G(V )

f(U)

ρUV σUV

f(V )

Note that this gives us a category of presheaves, together with a full subcategory of

sheaves.

Lemma 2.1. Let F be a presheaf. Then the sheaf associated to the presheaf, is

a sheaf F+, together with a morphism of sheaves u : F −→ F+ which is universal

amongst all such morphisms of sheaves: that is given any morphism of presheaves

f : F −→ G,

where G is a sheaf, there is a unique induced morphism of sheaves which makes the

following diagram commute

F G

F+

f

u

Proposition 2.1. Let ϕ : F −→ G be a morphism of sheaves. Then ϕ is an isomorphism

iff the induced map on stalks is always an isomorphism.

Proof. One direction is clear. So suppose that the map on stalks is an isomorphism. It

suffices to prove that ϕ(U) : F(U) −→ G(U) is an isomorphism, for every open subset

U ⊂ X, since then the inverse morphism ϕ is given by setting ψ(U) = ϕ(U)−1.

We first show that ϕ(U) is injective. Let s ∈ F(U) and suppose that ϕ(U)(s) = 0.

Then surely ϕp(sp) = 0, where sp = (s, U) ∈ Fp and p ∈ U is arbitrary. Since ϕp is

injective by assumption, it follows that there is an open set Vp ⊂ U containing p such

that s|Vp
= 0. {Vp}p∈U is an open cover of U and as F is a sheaf, it follows that s = 0.

Hence ϕ(U) is injective, for every U .

Now we show that ϕ(U) is surjective. Suppose that t ∈ F(U). Since ϕp is surjective,

for every p, we may find an open set p ∈ Up ⊂ U and a section sp ∈ F(Up) such

that ϕ(Up)(sp) = t|Up
. Pick p and q ∈ U and set V = Up ∩ Uq. Then ϕ(V )(sp|V ) =

ϕ(V )(sq|V ). Since ϕ(V ) is injective, it follows that sp|V = sq|V . As F is a sheaf, it

follows that there is a section s ∈ F(U) such that ϕ(U)(s) = t. But then ϕ(U) is

surjective.
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Example 2.6. Let X = C− {0}, let F = OX , the sheaf of holomorphic functions and

let G = O∗
X , the sheaf of non-zero holomorphic functions.

There is a natural map

ϕ : F −→ G,

which just sends a function f to its exponential. Then ϕ is surjective on stalks; this just

says that given a non-zero holomorphic function g, then log(g) makes sense in a small

neighbourhood of any point.

Definition 2.10 (push-forward). Let f : X −→ Y be a continuous map of topological

spaces. Let F be a sheaf on X. The pushforward of F , denoted f∗F , is defined as

follows

f∗F(U) = F(f−1(U)),

where U ⊂ Y is an open set.

Definition 2.11 (inverse image). Let G be a sheaf on Y . The inverse image of G,
denoted f−1G, is the sheaf assigned to the presheaf

U 7−→ lim
←−−

f(U)⊂V

G(V ),

where U is an open subset of X and V ranges over all open subsets of Y which contain

f(U).

Definition 2.12 (ringed space). A pair (X,OX) is called a ringed space, if X is a

topological space, and OX is a sheaf of (commutative) rings. A morphism ϕ : X −→ Y

of ringed spaces is a pair (f, f#), consisting of a continuous function f : X −→ Y and

a sheaf morphism f# : OY −→ f∗OX .

Definition 2.13. A locally ringed space, is a ringed space (X,OX) such that in

addition every stalk OX,x of the structure sheaf is a local ring. A morphism of locally

ringed spaces is a morphism of ringed spaces, such that for every point x ∈ X, the

induced map

f#x : OY,y −→ OX,x,

is a morphism of local rings (that is the inverse image of the maximal ideal of OX,x is

a subset of the maximal ideal of OY,y, where y = f(x)).

Note that we get a category of ringed spaces, whose objects are ringed spaces and

whose morphisms are morphisms of ringed spaces. Further the category of locally ringed

spaces is a subcategory.

Definition 2.14. Let (X,OX) be a ringed space. An OX-module is a sheaf F such

that for every open set U ⊂ X, F(U) has the structure of an OX(U)-module, compatible

with the restriction map, in an obvious way.
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By lemma 2.1 we may define various natural operations on sheaves. For example,

let F and G be two OX -modules. The tensor product of F and G, denoted F ⊗OX
G, is

the sheaf associated to the presheaf

U 7−→ F(U)⊗OX(U) G(U),

and curly hom, denoted HomOX
(F ,G), is the sheaf associated to the presheaf

U 7−→ HomOX(U)(F(U),G(U)).

Let f : F −→ G be a morphism of sheaves. The kernel of f is the sheaf which assigns

to every open set U the kernel of the homomorphism f(U) : F(U) −→ G(U). Similarly

the image is the sheaf associated to the presheaf which assigns to every open set U

the image of the homomorphism f(U) : F(U) −→ G(U). We say that ϕ is injective iff

Ker(ϕ) = 0 and we say that ϕ is surjective iff Im(ϕ) = G.
Given a morphism of ringed spaces, and a sheaf G of OX -modules, the pullback of

G, denoted ϕ∗G, is the sheaf of OY -modules,

ϕ−1G ⊗f−1OX
OY .

Furthermore, there is a well-known equivalence between idempotent monoids and

meet semilattices with a terminal object.

Proposition 2.2. If (M, ·, e) is an idempotent monoid, then the condition

x ≤ y ⇔ x · y = x (2.1)

defines a partial order on M such that any two elements of M have a meet and e is the

greatest element.

Conversely, if (E,≤) is a poset with a greatest element in which any two elements

x, y ∈ E have a meet x ∧ y, then E endowed with the addition (x, y) 7→ x ∧ y is an

idempotent monoid.

The two functors just introduced are inverses of each other.

Is there a counterpart to conditional meet semilattices with a terminal object in

the theory of idempotent monoids? The following result serves as a partial answer. It

involves upper sets of an idempotent monoid: a subset H of an idempotent monoid

M—equipped with the partial order in (2.1)—is called an upper set if h ∈ H and

h ≤ m implies that m ∈ H. For example, the simplicial subcomplex K in example 1.1

defines an upper set of ∆(I), seen as an idempotent monoid according to Proposition

2.2.

Proposition 2.3. Let (M, ·, e) be an idempotent monoid, and M its associated poset

12



(seen as a category). The full subcategory of M defined by any nonempty upper set H

of M is a unital conditional meet semilattice.

Proof. First, e ∈ H, because e is greater than any element of H. Second, if x, y, z be

elements of H such that z ≤ x and z ≤ y, then z ≤ x ∧ y in virtue of the universal

property of ∧ in M, which in turn implies that x∧y ∈ H (by definition of upper set).

2.3 Morphisms and (co)products

Definition 2.15 (pullback). Given category C with two morphisms f : B → A and

g : C → A, then a pullback is a triple (D,α, β), where α : D → C, β : D → B,

satisfying:

1. gα = fβ

2. Universal property: for all (X,α′, β′), α′ : X → C, β′ : X → B and gα′ = fβ′,

exists unique morphism θ : X → D such that α′ = αθ, β′ = βθ, and the following

diagram commutes.

X

D C

B A

α′

β′

θ

β

α

g

f

Given categories A,B and C, and a functor ξ : A → B, define the pullback ξ∗ :

[B,C]→ [A,C] by F 7→ F ◦ ϕ. It commutes with limits and colimits.

Definition 2.16. A morphism ξ : S1 → S2 of conditional meet semilattices is a functor

(i.e. a monotone map) with the following property: if X∧Y exists in S1, then ξ(X∧Y ) =

ξ(X) ∧ ξ(Y ).

A morphism ϕ : (S,M ) → (S′,M ′) between information structures is a pair ϕ =

(ϕ0, ϕ̂) such that ϕ0 is a morphism of conditional meet semilattices that maps TS to

TS′ , and ϕ : M → ϕ∗0M
′ is a natural transformation. If there is no risk of ambiguity,

we write ϕ instead of ϕ0.

Given ϕ : (S,M )→ (S′,M ′) and ψ : (S′,M ′)→ (S′′,M ′′), their composition ψ ◦ ϕ
is defined as (ψ0 ◦ ϕ0, ψ̂ ◦ ϕ̂ : M ⇒ ψ∗

0ϕ
∗
0M

′′).

We denote by InfoStr the category of information structures obtained in this way.

Note that, if X ∧ Y exists, then ξ(X ∧ Y )→ ξ(X) and ξ(X ∧ Y )→ ξ(Y ), and thus

the product ξ(X) ∧ ξ(Y ) exists too.

A morphism of information structures is a particular case of morphism of Meassurj-

valued covariant diagrams. We want ϕ0 to respect the unit and the products, so that it

induces a morphism between the corresponding presheaves of idempotent monoids.

13



The preceding definition is one of the main motivations for our generalized setting.

In fact, one could imagine a correspondence between the partitions of two concrete

structures defined on different sample spaces, but in which category would that corre-

spondence take place? Since we eliminated the explicit reference to the sample space in

our definition of information structure, the introduction of morphisms becomes straight-

forward. This allows the computation of products and coproducts.

Remark 2.1. The connection to the sample spaces is not completely lost, but reformu-

lated in the language of representations: if Si is a concrete structure on Ωi (i = 1, 2),

then the objects of S1 × S2 can be identified with partitions of Ω1 × Ω2, as one would

expect.

Proposition 2.4. The category InfoStr has countable products and arbitrary coprod

ucts.

Proof. Let 0 be the category that has⊤ as the only object and id⊤ as the only morphism,

and let M0 be the functor that associates to ⊤ the set {∗} equipped with the atomic

σ-algebra. Clearly (0,M0) is initial and terminal in the category InfoStr, hence it

corresponds to the empty product and coproduct respectively.

Nonempty products: Given information structures (Si,Mi) indexed by i in an

arbitrary set I, we introduce first the ordinary categorical product S =
∏

i∈I Si: its

objects are I-tuples ⟨Xi⟩i∈I with Xi ∈ Ob Si for each i ∈ I; there is an arrow ⟨πi⟩i∈I :

⟨Xi⟩i∈I → ⟨Yi⟩i∈I whenever πi : Xi → Yi in Si for each i ∈ I. Then a functor M :

S→ Meassurj is defined as follows: for each X = ⟨Xi⟩i∈I ∈ Ob S the measurable space

M(X) is the set E(X) :=
∏

i∈I Ei(Xi) equipped with the product σ-algebra B(X) :=⊗
i∈I Bi(Xi), which is the smallest σ-algebra that makes every canonical projection

p̂i⟨Xi⟩i∈I : E(⟨Xi⟩i∈I) → Ei(Xi) measurable; at the level of morphisms, M(⟨πi⟩i∈I) :=∏
i∈IMi(πi), which comes from the product in Sets.

The pair (S,M) is an information structure. It is easy to verify that S is a poset

with terminal object ⟨⊤Si⟩i∈I . The conditional existence of products also holds: if

⟨Xi⟩i∈I , ⟨Yi⟩i∈I and ⟨Zi⟩i∈I are objects of S such that ⟨Xi⟩i∈I → ⟨Yi⟩i∈I and ⟨Xi⟩i∈I →
⟨Zi⟩i∈I , then for every i ∈ I, Yi

πYi←−− Xi
zi−→ Zi in Si, which in turn implies that Yi ∧Zi

exists in Si by definition of conditional meet semilattice; the reader can verify that

⟨Yi⟩i∈I ∧ ⟨Zi⟩i∈I = ⟨Yi ∧ Zi⟩i∈I .

The functor M also has the desired properties. It is clear that E(⟨⊤Si
⟩i∈I) ∼= {∗}.

If I is countable, then for any (xi)i∈I ∈ E(⟨Xi⟩i∈I) the singleton {(xi)i∈I} belongs to

B(⟨Xi⟩i∈I), because it can be written as a countable intersection
⋂

i∈I(p
i
⟨Xi⟩i∈I )

−1(xi).

Finally, whenM is applied to the product ⟨Yi⟩i∈I ∧⟨Zi⟩i∈I and its projections, one gets

M⟨Yi⟩i∈I

M⟨πYi
⟩i∈I←−−−−−−−M⟨Yi ∧ Zi⟩i∈I

M⟨πZi
⟩i∈I−−−−−−−→M⟨Zi⟩i∈I .
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The map

M⟨πYi
⟩i∈I ×M⟨πZi

⟩i∈I :M⟨Yi ∧ Zi⟩i∈I →M⟨Yi⟩i∈I ×M⟨Zi⟩i∈I

is injective, because for any (yi)i∈I ∈ E(⟨Yi⟩i∈I) and (zi)i∈I ∈ E(⟨Zi⟩i∈I), the elementary

properties of set operations imply that

(M⟨πYi
⟩i∈I ×M⟨πZi

⟩i∈I)
−1 ((yi)i∈I , (zi)i∈I)

=M⟨πYi
⟩−1
i∈I ((yi)i∈I) ∩M⟨πZi

⟩−1
i∈I ((zi)i∈I)

=

{∏
i∈I

Miπ
−1
Yi

(yi)

}
∩

{∏
i∈I

Miπ
−1
Zi

(zi)

}
(by def. ofM)

=
∏
i∈I

{
Miπ

−1
Yi

(yi) ∩Miπ
−1
Zi

(zi)
}
,

and the cardinality of each factor in the last expression is at most 1.

For each i ∈ I, we introduce a morphism of information structures pi : (S,M) →
(Si,Mi) such that pi0 maps each object or morphism ⟨Ai⟩i∈I to Ai, and

p̂i⟨Xi⟩i∈I :
∏
i∈I

Mi(Xi)→Mi(Xi)

is the canonical projection (which is measurable by definition of the product σ-algebra,

see above). We claim that S, with the projections pi just introduced, is the prod-

uct of (Si,Mi)i∈I in InfoStr, written
∏

i∈I(Si,Mi), unique up to unique isomor-

phism (we also use the symbol × for finite products). In fact, given an I-cone {f i :

(R,F) → (Si,Mi)}i∈I in InfoStr (where I is seen as a discrete category), define

⟨f i⟩i∈I : (R,F)→ (S,M) by (
⟨f i⟩i∈I

)
0
: R→ S

R 7→ ⟨f i(R)⟩i∈I

for any object or morphism R; for any X ∈ Ob R, the surjection

⟨̂f i⟩i∈I(X) : F(X)→M(⟨f i(X)⟩i∈I) =
∏
i∈I

Mi(f
i(X))

is the map ⟨f̂ iX⟩i∈I induced by the I-cone {f̂ iX : F(X) → Mi(f
i(X))}i∈I in Sets, in

such a way that pi ◦ ⟨f j⟩j∈I = f i for all i ∈ I.
Nonempty coproducts: Given information structures {(Si,Mi)}i∈I , define a cat-

egory S such that

• Ob S =
⊔

i∈I Ob Si/ ∼, where ∼ is the smallest equivalence relation such that

⊤Si ∼ ⊤Sj for all i, j ∈ I;
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• A→ B in S if and only if A→ B in Si for some i.

LetM : S→ Sets be the functor that coincides withMi on Si. The pair (S,M) is an

information structure: the properties in Definition 2.4 are verified locally on each Si.
Injections ji : Si → S are defined in the obvious way: ji0(A) = A for A ∈ Ob Si or

A ∈ Hom(Si), and the mappings ĵiX are identities. If {f i : (Si,Mi)→ (R,F)}i∈I is an

I-cocone, define (
⟨f i⟩i∈I

)
0
: S→ R

A 7→ f i(A) if A ∈ Ob Si or A ∈ Hom(Si)

and, if X ∈ Ob Si, set (⟨f j⟩j∈I)X = f̂ iX . By construction, ⟨f j⟩j∈I ◦ ji = f i. Therefore,

(S,M) is the coproduct of {(Si,Mi)}i∈I in InfoStr, denoted
∐

i∈I(Si,Mi) (we also

use
⊔

for finite coproducts), which is unique up to unique isomorphism. ■

Remark 2.2. If (S1,M1) and (S2,M2) are bounded structures, their product and

coproduct are bounded too. In fact, if the height of the poset Si is Ni (i = 1, 2), then

the height of S1 × S2 is N1 +N2 and that of S1 ⊔ S2 equals max(N1, N2). Similarly, if

both structures are finite, their product and coproduct is finite too.

Remark 2.3. If each measurable space (E(X),B(X)) appearing in S1 and S2 verifies

that E(X) is second countable topological space and B(X) is its Borel σ-algebra, then

each algebra B(X1)⊗B(X2) on E(X1)×E(X2) equals the Borel σ-algebra on this space.

2.4 Representations

We introduce here the notion of representation of an information structure in

terms of classical observables (measurable functions) or quantum observables (self-

adjoint operators), as a bridge between our categorical definitions and the more tra-

ditional models used in classical and quantum probability theory. The rest of the paper

does not depend on this section. For simplicity, we restrict ourselves to finite information

structures.

Recall that Obsfin(Ω) denotes the poset of finite partitions of a set Ω, ordered by

the relation of refinement, and □ is the “forgetful” functor from Obsfin(Ω) into Sets

introduced in example 2.2, that maps each partition {A1, ..., An} to the set {A1, ..., An}
and each arrow of refinement to a surjection.

Definition 2.17 (representation). A classical representation of a finite informa-

tion structure (S,E ) is a pair (Ω, ρ), where Ω is a set and ρ = (ρ0, ρ̂) : (S,E ) →
(Obsfin(Ω),□) is a morphism of information structures such that ρ̂ : E → ρ∗0□ is a

natural isomorphism (i.e. the components ρ̂X : E (X)→ □ρ0(X) are bijections, natural

in X).
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If (Ω, ρ) is a classical representation of S, each observable X in S can be associated

with a unique function X̃ : Ω→ EX , in such a way that ρ0(X) is the partition induced

by X̃ and ρ̂X(x) = X̃−1(x). Since ρ0 is a morphism of conditional meet semilattices,

for any X,Y ∈ ObS the joint (X̃, Ỹ ) : Ω→ EX×EY is equivalent to X̃ ∧ Y : Ω→ EXY ,

in the sense that both induce the same partition of Ω.

The next proposition points to a close link between representations and limE . Recall

that the limit of the functor E : S→ Sets is defined as

limE := Hom[S,Sets](∗,E ),

where [S,Sets] is the category of covariant functors from S to Sets, and ∗ is the functor
that associates to each object a one-point set; equivalently

limE ∼=

{
(sZ)Z∈ObS ∈

∏
Z∈ObS

E (Z) : EπY X
(sX) = sY for all πY X : X → Y

}
,

where sZ denotes φ(∗) for any φ ∈ Hom[S,Sets](∗,E ). The requirements imposed on

(sZ)Z∈ObS in (23) are referred hereafter as compatibility conditions. We denote

the restriction of each projection πE (X) :
∏

Z∈ObS E (Z)→ E (X) to limE by the same

symbol. We interpret the limit as all possible combinations of compatible outcomes.

Proposition 2.5. If (S,E ) has a classical representation (Ω, ρ, ρ̂), then for any X ∈
ObS and any x ∈ E (X), there exists an element s(x) ∈ limE such that πE (X)(s(x)) = x.

Proof. For each X in ObS, there is a surjection πX : Ω → E (X) obtained as the

composition of ξX : Ω → □ρ0(X), which maps ω ∈ Ω to the part that contains it, and

ρ̂−1
X : □ρ0(X) → E (X). The maps {πX} define a cone over E i.e. given f : Y → Z in

S, one has a commutative diagram

Ω □ρ0(Y ) E (Y )

Ω □ρ0(Z) E (Z)

ξY ρ̂−1
Y

□ρ0f E f

ξZ ρ̂−1
Z

the commutation of the left square comes from the definition of Obsfin(Ω) and □, and

the right square commutes because ρ̂ is a natural isomorphism. Therefore, there is a

map π : Ω → limE and the desired section is obtained as the image under π of any

ω ∈ ρ̂X(x). ■
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