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3.1 Measurable maps

We now study maps X : Q — ' (often ' = R? d > 1, so X is a function).

Definition 3.1 (Measurability, random elements, variables, vectors, etc.)
If (2, F) and (', F’) are measurable spaces, then X : Q@ — Q' is (F,F/)-
measurable (or simply measurable) if

X NF)CF,

iie. X~ 1(A) € FVA € F'. In this case, X is called random element. If
(Y, F) = (R,B(R)), X is called random variable (rv). If (', F') = (R%, B(R?)),
d > 2, X is called random vector, and if d = oo, X is called random sequence.

= A rv X (term supported by William Feller) is neither random, nor a variable, it
is a (considered random in the sense that we don't know its evaluation
point, the sample point w € Q).

= Carefully (the map; potential outcome) from (the
value, actual outcome, or realization based on the “state of nature” w € 2 that
happened in an experiment).
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» (F,B(R%))-measurable functions X : Q — R?, d > 1, are often simply referred
to as (F-)measurable; notation: X € F. (B(Q),B(R?))-measurable X are
called Borel measurable and (B(Q), B(RY))-measurable X Lebesgue measurable.

® To allow as many maps as possible to be measurable, one typically assumes
F to be complete (F = F) and the definition of rvs uses the Borel o-algebra
F' = B(R?) (not: Lebesgue o-algebra B(R?)). We can then hope (see later)
that h(X) for a Borel measurable h is again Borel and so a rv (which it may
not be if h was Lebesgue measurable).

Example 3.2 (Non-measurable X : Q) — R)

1) Trivial example: Let Q # () and 7 = {(), O} be the trivial o-algebra. Then
any non-constant X : {2 — R is not measurable.
Proof. Consider any z = X (w) for some w € Q. Then {z} = N, cn(z—1,2] €
B(R), but X~ t({x}) # 0 (since w € X1 ({z})) and X1 ({x}) # Q (since X
takes on at least two different values), so X ' ({z}) ¢ F.

2) Example for any F: If (2, F) is a measurable space and V' C O : V ¢ F (e.g.
(R, B(R)) with Vitali set V'), then X = 1y is non-measurable.
Proof. X7 1((3,1)) ={weQ: X(w)=1}=V ¢ F.
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Example 3.3 (Determining measurability and o(X) by definition)

Q, ce B,
1) If X =cc R, then, VB € B(R), we have X~ 1(B) =
§X|sarv. Also, a(X):fX LB(R)) = {0,Q}. 0, c¢B,
2, 0eB,leB,

A, 0¢ B,1€ B,
2) If X =14 for A€ F,then, VB € B(R), X }(B) = ¢

= Xisar. Also, o(X) = X 1(B[R)) = {0,4, |4 0€B1EB,
AC ,Q}. In particular, if Q= {1,...,6} and F={0, |0, 0¢B,1¢ DB,
{1,2},{3,4,5,6},Q} then X = 1{1‘2} isarvon (Q,F), but X =153 is
not (e.g. X~ 1((1/2,1]) = {1,2,3} ¢ F).

3) Arv X is simple if, for some n € N and a partition {4;}7; C F of Q,

n
X = ZZL’Z']]_AZ.

Similarly as in 1), 2), 0(X) = {U,EIA I C{1,...,n}} (it contains all 27
distinct preimages X ~! of Borel sets that contain any subset of {z1,...,z,}).
Simple rvs are important for constructing the Lebesgue integral (see later).
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Lemma 3.4 (o-algebra generated by preimages)
Let (2, F), (€, F') be measurable spaces and X : Q — Q. If A/ CP(Q), then

o(X~

LAY = XY o(A). If F/ = o(A), then o(X1(A")) = o(X).

Proof.

“C”:

HQH

A Co(A) = XTI A) C X!(o(A)). By E.296), X (o(A)) is a
o-algebra, and it contains X~ '(A') = o(X~'(A')) C X (0(A)).

mallest

: We follow the principle of good sets and first show that G := {A’ C O :

(A e o(X71(A")} is a o-algebra on ':
i) QeGsinceY CQ and X 1Y) =Qeo(X1A)).
i) A€ g = ACQ X HA)co(X HA)) = AcCQ XA
=X ~1(Anye LE, o(XTHA)) = A eg.
i) {Al}ien C Q = A CQ: XA e o(XHA)) = U2, AL C O
XTHUZ A) 5, U XA e o(XTHA) 2 UR 47 eg.
Now V A’ € A’, we have X 1(4') € o(X1(A")),s0 A C G = o(A) c g
= X H(o(A) S XHG) C o(XI(A)).

def. G

512

If 7/ = o(A), then o(X) = X~1(F') = X! (o(A) 2 o(X~(A)). =

shown
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Proposition 3.5 (Checking measurability via a generator)
Let (2, F), (€, F') be measurable spaces, A’ C F' : o(A") = F'. Then
X : Q — Q' is measurable iff X~1(A") C F.

Proof.
“=": Since A’ C o(A) = F = X‘l(A’) C X‘l(]-“’) c r
e XU F) = XN o) 5 o(X ) T e T 0

Proposition 3.6 (Compositions)
Let (Q,F), (¥, F'), (", F") be measurable spacesand X : Q@ —» ', YV : Q' —

Q)" be measurable. Then Y o X is ((F, F”)-)measurable.

Proof. Y A" € F",
YoX) A ={weQ:Y(X(w)eA})={weQ: X(w)cY (A"}
={weQuweXx Yy A =x"Yy 14" e FO
——

X meas.

€ F

Y meas.
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Proposition 3.7 (Continuous maps are measurable)
Let (2,7), (£, 7") be topological spaces and X : Q@ — ' continuous. Then X

is ((B(€2), B(€Y'))-)measurable.
Proof. X ~1(T") < TCo(T) = B(Q) = o(XHT") € B(Q) = X o(T)

cont. smallest

cBO) = | _1(8( ))QFB(Q)\/ O

o(T') = B(Q')

Proposition 3.8 (Monotone functions are measurable)
Monotone h : R — R are ((B(R), B(R))-)measurable.

Proof. Wlog, consider h to be increasing; the proof for decreasing h works similarly.

* By R. 224 1), {[t,00) : t € R} generates B(R) = it suffices to check that
h=L([t,00)) € B(R) Vt € R.

» Fort € R, consider A; := h '([t,00)) = {x € R: h(zx) € [t,00)}.

= Forevery x9 > x1 € Ay, we have h(z2) > h(z1) 2 t, so xy € A;. Therefore,
A; must be an interval of the form [mf At, 00) |f§ € ran(h) or (inf Ay, 0o) if
h(inf A¢) < t, so a set in B(R). v O
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Example 3.9 (Lebesgue set that is not a Borel set)

Consider V := F*I(V), where F~1 is the quantile function of the Cantor df F
from E. 2.51 and V is the Vitali set of T. 2.1.

As a countable intersection of closed sets, the Cantor set C is a Borel null set.
V= F=H(V) € F71([0,1]) .= C = As a subset of the Borel null set C, V' is

cont.

Lebesgue measurable.
F continuous = F~1 1 =, F~1is Borel measurable.
Suppose V was Borel measurable, then its preimage (F~1)~1(V) under the

Borel measurable function F~1 is a Borel measurable set. However,

(F 'OV ={y:Flyevi={y: F'y) e ' (V)} =V ¢BR) /.

def.

So V is Lebesgue measurable, but cannot be Borel measurable.

If f is Borel measurable, then f o g is Lebesgue or Borel measurable whenever g is.
Butif f:R—Rand g: R — R are both Lebesgue measurable, then f o g may
not be. If A € B(R), then f~1(A) € B(R), but unless also f~!(A) € B(R), there
is no guarantee that g~ '(f~1(A)) € B(R); see E. 3.9 above.

© Marius Hofert Section 3.1 | p. 116



Proposition 3.10 (Random vectors are vectors of rvs)
Let (92, F) be a measurable space and X : @ — R?. Then X is a random vector
iff X = (Xq,..., Xy) for rvs X1q,..., X4

) )

Proof.

“=" Let X : Q — RY be measurable. The projection TR R? — R onto
the jth coordinate with 7;(x1,...,24) = x; is continuous since Ve > 0
35> 0:|mj(x) —7mi(y)| = |z; —yj| <e V|x—y| <0 (e.g. take 6 =¢).
= m; is measurable = X; :=m;j 0 X : ) — R is measurable, so a rv.

“«<": For all —oo < a < b < oo, we have X 1((a,b]) = {w e Q: X(w) €
(a.b]} = {w € Q: X;(w) € (a;,b5] Vi} = M= Xj ' ((a,05]) (€, F. As
o({(a,b] :a,be R a<b}) = )B(Rd), P. 3.5 implies that X € F. [

R.2.241

= Because of P. 3.10, we typically use bold notation for (random) vectors, so
X = (X1,...,Xy4). If necessary (e.g. multiplications with matrices), we
interpret X as a (d, 1)-dimensional (random) matrix.

® Standard notation for the sample mean is X, := 2 3" | X; and for the sample
maxima M, := max{X1,...,X,}.
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Corollary 3.11 (Sums, products, minima, maxima, etc.)
Let b : RY — R* be measurable.

1) If X is a random vector, then Y = h(X ) is a random vector.

2) Sums, products, minima and maxima of rvs are rvs.

Proof.

1) P. 3.6 (composition).

2) Follows from Part 1) with & = 1 using the fact that sums, products, minima
and maxima are continuous functions and thus measurable by P. 3.7. O

Lemma 3.12 (Measurability of quantities involving sequences of rvs)
Let (X;)ien be a sequence of rvs on a measurable space (€2, F).

1) infg>p Xg, supgs, Xi, liminf, .o X, limsup,,_, ., X, are rvs.
2) If limy, 00 Xp(w) exists Vw € § (surely), then lim,, oo X, is a rv.

3) {w € Q:limy, 00 Xy (w) exists} € F, so is a measurable set.

Proof. All expressions are functions {2 — R. We have left to show measurability:
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1) i) (infg>p, Xi) " H(—o00,2)) = {weQ: infy>, Xi(w) <} foratieest Uksniw €

onek

Q: Xp(w) <3} = Upsn X ((—o0,2]) € F Vo eR = v

X (=0, 2)) € F
i) (supgsy, Xi) ! ([2,00)) = {w € Q: supysy Xi(w) > 2} "= Upsp{w €
Q: Xp(w) > 3} = Upsp X, H(fz,00)) | € _F VazeR gz v

X, " ([z, 00))

v' and similarly lim sup,,_, ., Xn =

—1
;

e\ e . . i)
i) liminf, 00 X = supy,>q (infy>n Xi) = =

inf,>1 (supg>, X) LY

P.3.6
2) If limy, 00 X, exists surely, then lim,, oo X, (w) = limsup,,_, ., Xp(w) Vw =

v

3) We have
{we: lim X,(w) exists} = {w € Q : liminf X, (w) < limsup X, (w)}
n— 00 n—o0 n—00
= U {weQ: lingiann(w) < ¢ < limsup X, (w)}
) n—0o0 n—00
= J{we: lirgiann(w) < g} N{w € Q: limsup X, (w) < ¢}°) SRS
7€Q n—0o0 n—00
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Lemma 3.13 (Measurability of a.e. limits under completeness)
Let (2, F, i) be a measure space and X, Y, (X,,)nen : @ — R. Then p is complete
iff any of the following implications hold:

1) If X is measurable and X =Y, then Y is measurable.

2) If X,, is measurable Vn € N and X, :> X, then X is measurable.

Proof.

1) “=": Let N € F: u(N)=0and X =Y on N¢. For any measurable set A, we

thus have Y "1 (A) = (Y L(A)NN)W (Y "L (A)NN¢). Then Y 1(A)NN
is measurable as a subset of a null set and F is complete. And on N€,
we have Y71(A) N N¢ = X~ 1(A) N N¢, which is measurable (as, by
assumption, X is measurable, so X ~1(A4) € F and thus X 1 (A)NN¢ €
F). Therefore, Y1(A) N N and Y~1(A) N N¢ are measurable, and so
is Y71(A) = (Y YA NN)w (YA NN¢). Thus Y is measurable.

: Let N C N, for N € F:u(N)=0. Let X =1y and Y = Ly.

Then X =Y a.e,, so that, by assumption, Y is measurable. Therefore,
N'=Y~}({1}) € F, so N’ is measurable. Hence p is complete.
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2) "=": Let Ne F:pu(N)=0and X, — X pointwise on N°. Foralln €N,
X1 e is measurable by C. 3.11 2) and converges everywhere to X 1 e
(the convergence holds on N¢ by assumption, and otherwise both are
0). Then X 1ye is measurable by L. 3.12 2). Since X1y = X a.e., 1)
implies that X is measurable.
“<": Let NN C N, for N € F: u(N) = 0. Let X, = 1y, n € N,
and X = 1ps. Then X, n%&ﬁ) X, so X is measurable. Therefore,
N’ = X~Y({1}) € F, so N' is measurable. Hence 1 is complete.

O]
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3.2 Distributions

Proposition 3.14 (X induces a measure on (', F"))
If (Q,F,u) is a measure space, (2, F') a measurable space and X : Q —
measurable, then yy := o X! is a measure on (Q', F'), the distribution of X

(also push-forward measure or image measure of . wrt X).

Proof.

i) ux:F —[0,1] vV

i) px(0) = p(X1(0) = p(0) =0 v

i) {Aldien ©F, ALNA, =0Vi#j = px(Wiew A) = p(X " Wiew A) =,
il X1 (AD) ST 00 (XTI (AL) = S e (A]) v O

o-add.
" VA EF, p(X € A) = pl{w e O X(w) € A)), = u(XTUA)), = px(4)
= We typically consider the case where ;1 = P is a probability measure and
(Y, F) = (RY B(RY)), d > 1. Then
Pla< X <b):=P(X € (a,b]) =P{we Q: X(w) € (a,b]})
= Px((a,b]), —oco<a<b<oo. (1)

above
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= We can now make a connection between the distribution Px of X (a Borel
probability measure) and its df F.

Proposition 3.15 (Characterization of X by F' via Px)
1) X induces F: If X is a random vector, then its distribution Px is a probability

measure on R? with df , x € R4,
2) Finduces X: If F'is a df on R?, then there is a probability space (2, F,P)
and a random vector X : Q — R< such that ,x € RY
Proof.

1) By P. 3.14 with (@, F") = (R%,B(R%)), we know that Px is a probability
measure on B(R?). lts df is F(x) Cmy Px((—o0 :L']) P(X <z), xRl
2) We only consider the case d = 1; the general case can be shown iteratively
based on “conditional distributions functions” we have not introduced yet. If

(Q, F,P) = ((0,1], B((0,1]), \) and X (w) := F~}(w), w € Q, then
P(X <2) = P({w €Q: X() <a}) = P({we Q: F'(w) <a})

Ly PHw € Q:w < F(2)}) = P((OaF(Jﬂ)]) = MO, F(x)]) = F(z). O
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Remark 3.16

1)

Because of the correspondence between X, Px and F', one writes X ~ F,
also X ~ Fx to distinguish different dfs. If, for j = 1,2, X; ~ [ is a random
vector on (€, F;,P;), we also write X; = X5, where = denotes the equality
in distribution. Also, for X ~ F', we let supp(X) := supp(F).

By P. 3.14, the distribution Px = Po X! of X ~ F is a probability measure
on B(RY) with df F. We thus must have

P(X € (a,b]) = Px((a,b]) = Agyl, —oo<a<b<oo,

) / R.2.492)

so the F-volume is the probability of X ~ F' to take values in (a,b].

Visual confirmation (d = 2):

%1 Fa,b, F(b,.b,)
A(ayF = F(b1,bs) — F(b1, as) T TP
— F(a1,b2) + F(ay,a2)
oo DX < (Z; )) —P(X < (Zé )) a, - [IFea) F(b,a,)
—P(X < (5) +P(X < (3)) 7
2 F(X € (a,b)). T L

indeed 1
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3) Random vectors are discrete, continuous (singular), absolutely continuous or
mixed-type if their dfs F' are. As densities (pmfs) f also uniquely determine
F', one also occasionally writes X ~ f meaning X ~ F for F' having density
(pmf) f; this also applies to other quantities that uniquely characterize F.

4) One also overloads the notation of F' and uses F(B) := Px(B), B € B(R?);
e.g. F((—oo,z]) =Px((—oo,x]). One therefore often uses the terms “distri-
bution” and “distribution function” interchangeably.

Corollary 3.17 (Equality in distribution of functional transforms)
If, for j = 1,2, X; ~ I is a random vector on (Q;, F;,P;), then h(X1) = h(X2).

Proof. X1 = X5 = V measurable h : R — R one has

Frixy)(®) = Pi(h(X1) < @) = P1(X1 € h™!((—o0,2])) = F(h™((—o0,2]))

= Fh(XQ)(a:), T € Rk,

backwards

so h(X1) = h(X3). O
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3.3 Margins

Let X = (X1,...,Xq) ~F, JC{1,...,d}. Then the J-margin F; of F'is
. _ cont. |J|

Fi(xy) wine leclgoo Fz) =, wjlclglooP(X <z) = P(X; <zy), z; €R",
which, again by P. 3.15, is the distribution function of the random vector
X = (Xj)jes. We therefore also call X ; the J-margin of X.
For J = {j}, j=1,...,d, the jth margin of I or X is Fj(z;) = P(X; < z;),
T € R.
If Fis absolutely continuous, then

Fils) = F(o0sea)) = [ a== [ [ pz) e,

( oo OoJ(—mJ]

so that Fly is absolutely continuous with .J-marginal density of F' or X given by

fat@n = [ " Fzres,)dzge.

—00

= So we see that F' being absolutely continuous implies that all lower-dimensional

margins are absolutely continuous, and we obtain their marginal densities by
integrating out joint densities over the remaining variables.
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" The converse does not hold in general, so absolutely continuous margins do not
necessarily imply an absolutely continuous F', only if the underlying dependence
structure (see later) has a density; see E. 3.22 later.

= Similarly, if F'is discrete one has joint/marginal probability mass functions; in
this case replace integrals by sums.

3.4 Survival functions

® Several quantities related to a df F' of X are frequently of interest, one being
the survival function (sf) of X ~ F defined by I'(x) := P(X > ), © € RY,
and often considered for X > 0 a.s., so with support [0, c0) and F(0) = 1.

= As for the margins of F, the .J-margin of F is Fj(x) =P(X; > xJ).

" The jth marginal sf is Fj(z;) == P(X; > z;) =1— Fj(z;), j=1,...,d.

" For d =1, expressing I in terms of F is straightforward via F'(z) = P(X >
) =1-P(X <z)=1-F(z), 2 € R, but for d > 2, F(z) = P(X >
) #1—-P(X <x)=1- F(x). For example, for d = 2,

P(Xl > x1, X9 > ZEQ) p%: P(Xl > .%'1) — P(Xl > x1, X9 < l’g)

F(.Z'l, l’g)

def.
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=ZP(X1 > 21) — (P(X2 < 22) — P(Xy < 21, Xa < 19))

prob.

:1*F1($1)*F2($2)+F($1,1‘2), r1,x2 € R.

In general, we have the following result.

Lemma 3.18 (F in terms of F)
If X ~ F, then

F)= Y (-)VYF(cosis,), =eR%

Proof.
) d
F(z) =P(X > x) =1 —IP’( U{Xj < :E]}>
j=1
L Z(_l)]fl Z [P< ﬂ {Xk < ZEk})

excl.
j=1 JC{L,..dy:|J|=j “keJ

d
=1 Y (N )
J=1  JC{l,..,d}:|J|=j “keJ
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S S B(NXesa)

=0 JC{l, Ldb|J|=j “keJ

d
(Y Floogea,) = Y (—)VIF (00 ia,),

j=0 Jg{l,...,d}:|]\:j JC{1,....d}

where we in (x) assume that (,cg{ Xk < 2} = Q. O

3.5 Extensions

Similarly as in P. 3.10, one can show that X is a random sequence iff X =
(X1, Xo,...) forrvs X1, Xo,.... Such an X is also known as a discrete-time
stochastic process.

The step to a continuous-time stochastic process, i.e. (X¢)ier for I C R can
be made via Kolmogorov's extension theorem.

Tothisend, Yk € N, t; < --- < t}, € I, the probability measures P;, _;, ([T%-; B;)
= P(Xy, € B1,..., Xy, € Bg), B; € BR?Y) Vi =1,...,k, are the finite-
dimensional distributions of X = (Xi)ter-
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Theorem 3.19 (Kolmogorov’s extension theorem)

VEeN t < - <ty el letlP ;. beprobability measureson (R%)¥ (Cartesian

products of k Borel sets, each in R?) satisfying

i) th(1)7~-~7tw(k)(nf:1 Bw(i)) = Ptl,”.,tk (Hf:l Bi), VBi,...,Br € B(Rd) and all
permutations 7 of {1,...,k} (permutation invariance); and

i) Pryogp (10 Bi x RY) =Py (IT1E, B;) VBa,..., By, € B(RY) (com-
patibility).

Then there exists a probability measure P on ((Rd)I,B((Rd)I)) (note: (R%)!

denotes all functions from I to RY) such that the stochastic process (coordinate

process) X = (Xi)er : (RY)! — R? evaluating its argument from (R4)! at

t has (the given compatible) (P, 4, )i <...<t,cr, ken as its finite-dimensional

distributions (so there exists a probability space, namely ((Rd)I,B((Rd)I),P), and

a stochastic process, namely X, with these finite-dimensional distributions).

Proof. Application of Carathéodory's extension theorem; see Billingsley (1995,

T. 36.1) based on product-o-algebra and finite intersections of preimages of
projections (cylinder sets). O

If the finite-dimensional dfs are jointly normal, one obtains Brownian motion.
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3.6 Examples of distributions
3.6.1 Examples of univariate distributions

Example 3.20 (Bernoulli distribution)

" The df of the Bernoulli distribution B(1,p) is F(x) = (1 = p)ljg ) (®) +
Pl ) (), © € R, for some parameter p € [0, 1].

= Arv X ~ B(1,p) satisfies P(X =0) =1—pand P(X = 1) = p. Thus
14 ~ B(1,p) for any event A € F with P(A) = p.

Example 3.21 (Uniform distribution)
= The df of the uniform distribution U(a,b) is F(z) = mm{ma’g{x apbi=a o e R,

—a

or F(z) = §=%, = € [a,b], for some parameters —oo < a < b < oo.
= [ is differentiable a.e. with F'(z) = ;= aﬂ(a b)( x), x ¢ {a,b}, which integrates
to F, so F'is abs. cont. with density f( )=F'(z) = ﬁﬂ(a,b) (), x € R.

Interpretation: A constant density ;1 over (a,b) means for X ~ U(a, b) that

z+h
P(X € (1-,;l;+m):/ 1/(b—a)dz = h/(b—a), =€ a,b—h]
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i.e. there is equal probability of X ~ U(a,b) to fall in any interval of length h.

= For rvs following U(0, 1), one typically writes the letter U. There are various
algorithms to generate realizations of U ~ U(0, 1) with software.

m P(X =2x) Cin F(z) = F(z—) = F(z) — F(z) = 0, z € [a,}]. In particular,

P(X =) # 3= = f(z), = € (a,b). Densities should be interpreted via
P(X € (z,z + h))

flz) =~
h > 0 small h
since P(X € (x,z+h]) = F(x +h) — F(z) = f;"HL f()dz |~  flz)(@+

h —z) = f(x)h.
® Also note that “X ~ U(a,b) has density f(z) = ;" is wrong. For densities
or pmfs, always provide a domain (here: = € (a,b), not x € R).
Question: Is there a uniform distribution on an unbounded interval I = (a, b)
with a = —o0o or b = c0? No.
Proof.
Case1): f(z)=0,z€l= f(z)=0,z€R= [ 0dz=0+#1"%
Case 2): Suppose f(z) =c¢ >0, x € I. Then [ f(z)dz > [; f(z)dz =
Jiedz=00#1/¢ O
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We can now provide a counterexample for a statement in S. 3.3.

Example 3.22 (Abs. cont. margins % abs. cont. F’)

X = (U,U) for U ~ U(0,1) has U(0, 1) margins with fx,(z;) = 19 1)(z;), j =
1,2, but Fx(x) = P(U < z1,U < x9) = P(U < min{x,z2}) = min{x, 2}
has no density since

2 o _ _0 _

0 F (m) _ 20071 T = 83:21 = 0, r1 < Tg,
2

8$26$1 me = 8720 = 0’ Tr1 > X9,

which integrates to 0 # 1.

Example 3.23 (Exponential distribution)

= The exponential df is F(z) = (1 — e’M)H[O,OO) (x) for some A > 0.

® [} is differentiable a.e. with F'(z) = )\e*)‘z]l(ovoo) (), © # 0, which integrates to
F, so F is absolutely continuous with density f(x) = F'(z) = )\e*’\m]l(oyoo) (x).

® The quantile function of F' (obtained by solving F(x) = y wrt z) is F~!(y) =
—xlog(1 —y), y € (0,1].
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Example 3.24 (Normal distribution)

The normal df is F(z) = ®(%=£) = [T f(z)dz (left) with density f(z) =
2o = \/Zir?exp( %(IU“) ) zeR (rlght) for u € R (here: ;1 =0) and

o >0 (here: 0 =1). The case 4 =0, o = 1 is known as standard normal df.

o | <
= S

0.8
I

0.6
I

Standard normal f(x)

Standard normal F(x)
0.4
1

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

This rather non-tractable F is of interest due to its properties (role in the “central
limit theorem”, sums of “jointly normal random variables”, etc.).
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Verifying that the integrable, non-negative f(x)

. 1 1
€Tr) =
proper density on R can be done as follows. With

e 2 (554)? is indeed a
\V2ro?

T —
y fry
we obtain that

o
"0 1 o0 2 2 [ 2 2
PO S Ly :\f/ Y :;ff,
[ a@ae= oz [ ey o2 [Ter =
Then
p o0 12 o0 2 o o0 2 12
[Z:I-I:/ e_Tda:/ e_%dy:/ (/ e_y2dy>e_2dx
0 0 0 0
o0 o0 ac2 2
_/ ( / 2+ dy >dx :./ (/ re (lth)
Tonelli 0 0

dx) dt
= foowe M

2 (1+¢%)
= 2
/ 1 + t2 }

/ TIe dt = [arctan(t)]g° = >
soI:\/>andthus] zdz—[[-l
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Example 3.25 (Empirical distribution)

The discrete empirical df (edf) of the n (here: n = 8) data points X =
(X1, Xn) = (1,2,3,3,3,4,5,6) is Fu(z) = =3 Lix,<s (relative fre-
quency of points < z; left).

® F,, jumps at each unique data point z = X by its relative frequency (e.g. at
x =1by 1/8, at z = 3 by 3/8); for larger n, one can use vertical bars (right).
= F,, approximates to the (true underlying, but unknown df) F' that produced X.

Later: “F,, =5 F" pointwise and uniformly.
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3.6.2 Examples of multivariate distributions

Example 3.26 (Absolutely continuous distribution)
The density of the normal df F(x) = [*_ f(z)dz can be shown to be

wzéex —133— s e — x € R?
/() e p( 5(@—p) B W), zer’

for u € R? and ¥ € R%*? being symmetric, positive definite (a covariance matrix,
more later; here: pu = 0 (all figures), & = (_g7; ~5™) (left), & = (o} ")
(middle, right)).

- - ~ 10
% o NN W Som %

£ AN g2 R OF e R
e YT : 2 £ 2 £
oo NN
AU, | 1 BE
g oo ,,_;,’ll,!g!zw«‘,ww@‘\\_\\.. 5 8 I 3
L N | 1 4 o
5 o SIS 3 @ /NN § 2 R LR 5

; ) X1 ! S ', o X1 K ) X;
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Example 3.27 (Discrete distribution)
The discrete empirical df (edf) of

1 8 B
2 7| ©
X\ Xi11 X2 g g ’§
X: = . = z
- : 3 4 3
Xn Xn,l Xn,2 4 3 ?,
5 2| ¢
6 1

is F(z) =137, Iix,<z) (the first column

or component sample is as in E. 3.25).

= Due to ties (equal values in at least one component sample) F,,(z1,22) =
% i=1 1{X, <1, X, 2<z,} jumps 6 (instead of 8) times in the first dimension.

= Asfor d =1, F), approximates the (true underlying, but unknown df) F' that
produced X, and “F}, n%% F" pointwise and uniformly.
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Example 3.28 (Mixed-type distribution)

Based on the same data as in E. 3.27 and with absolutely continuous parts on
(—o0, 1) (covering the y-axis range (0,1/4)) and [6,00) for F} and [8, c0) for [}
(covering the y-axis range [3/4,1)), we obtain a bivariate mixed-type df:

Fila)
Falxz)

il
! \\\\“\\“\\\}‘“‘

Normal copula, mixed-type margins

\\‘ s

Bivariate mixed-type distribution function F(x;, x,)

" The left shows Fp, the middle F5, and the right F.

= Such distributions (with much larger number of samples in the body) frequently
appear in practice, combining actual observations in the body with (absolutely)
continuous and thus more tractable distributions in the tails.

= Question: Why is F (F3) best visible for large za (z1)?
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Example 3.29 (Distribution with discrete and continuous margins)

F (first row) with discrete F (X7 ~ B(1,0.6)), continuous 5 (X2 ~ N(0,1)), and
“dependence” between X7 and X3 given by a normal copula (more later) mimicking
negative dependence (left), independence (centre) and positive dependence (right).
The dependence is also visible from realizations of (X7, X2) ~ F' (second row).

B E E
i i i
=0 g = ot -
S 3 S s ] ©
5 os 5 5 3 g =
Z oa § % g % 2
£ 5 £ g £ g
H H g H <
> 2 2 5
2 2 32 £
z b 2 5 2 2
3 oo 1 = e
P ; :
ade - . -
o 8
Y 8|s | I 5 b E
H 4 i H
H H ] H
H ° 8 g o l?
71 H 7 °J2 e H
T T T T T T T T T T T T T T T T T T
0 02 o4 o6 08 10 0 02 o4 o5 o8 10 o0 02 o4 o5 o8 10
x % %
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3.7 Univariate transforms

We now discuss two important transformations of random variables.

Proposition 3.30 (Quantile transform)
Let F be a df and U ~ U(0,1). Then F~1(U) ~ F.

Proof. P(F~Y(U) < x) = )IP’(UgF(:U)):F(x),mER O

L.2.533

= See also the proof of P. 3.15 2) (F' induces X).

= P. 3.30 provides a representation of X ~ F via X = "1 (U). A represen-
tation in distribution of a random element in terms of others, typically more
elementary ones, is called a stochastic representation (sr). Srs are
of understanding stochastic models.

Example 3.31 (Stochastic representations)
1) By P. 3.30 and E. 3.20, X ~ B(1,p) has sr X = Ly<py for U ~ U(0,1).
2) X ~U(a,b) hassr X = a+ (b— a)U for U ~ U(0,1).
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Proof.

= Either directly via Fx(z) =P(X <z)=Pla+ (b—a)U <z) =P(U <
=) =2, x € [a,b].

= Or, by P. 330, X = F~Y(U) with F~(y) = a+ (b—a)y. O

3) X ~Exp(A), A >0, hassr X = —}1log(1—U) = —3 log(U) for U ~ U(0, 1).

Under continuity of F' a converse is given as follows; an extension to arbitrary dfs
F' can also be given.

Proposition 3.32 (Probability transform)
If X ~ F, F continuous, then F'(X) ~ U(0, 1).

Proof. F continuous %" F~! 1 on [0,1], so

L.2.534)

P(F(X) <u) = P(FH(F(X)) < F7'(u) "7 P(X < F~H(u))

L.2.531)

L.2?32) F cont.
If F'is not continuous = Jxz € R: F(z) > F(z—) = F(X) ¢ (F(z—), F(x))
[0,1] = F(X) cannot be U(0, 1) distributed.
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4 Ordinary conditional probability,
independence and dependence

41 Ordinary conditional probability

4.2 Independence

4.3 Dependence
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4.1 Ordinary conditional probability

Proposition 4.1 (Ordinary conditional probability)
Let (Q, F,P) be a probability space, B € F : P(B) > 0. Then P(A| B) := %,
A € F is a probability measure on (2, F), the (ordinary) conditional probability

of A given B.

Proof.

1) 0<P(ANB) < P(B)VAe F = P(-|B): f—)[O,l].

2) P(Q| B) = P(S1 B)/B(B) = P(B)/B(B) _

3) {Abiew C F, AmA @wﬂép( (4| B) = Mg 40h)

P, (4inB) P(4,NB) P A mB
oo ( IP’(B) ) ooadd. IP’(B = Zoo ( ) ; i:l (A@ | B) O

distr.

= |f P(B) = 0, we use the convention that P(A]B) (B) = 0, motivated by
P(A[B)P(B) = P(AN B) < P(B) = 0, which makes sense for any definition
of P(A| B) if P(B) = 0.

® [mportant results involving ordinary conditional probabilities are the law of total

probability and Bayes' theorem.
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Theorem 4.2 (Law of total probability)
Let (2, F,P) be a probability space and {B;};eny C F a partition of Q. Then

P(A) = iP(A NB;) = iIP’(A | B;)P(B;), A€F.

=1 =g P(B;)=0

Proof. P(A) = Y P(ANB;) = X2, P(A| B))P(B;) O

meas. def.

Theorem 4.3 (Bayes’ theorem)

Let (Q, F,P) be a probability space and A € F : P(A) > 0. Then

P(A| B)P(B)
P(4) 7

If {B;}ien C F is a partition of 2, then

PABi)P(Bi) w  P(A|B;i)P(Bi)
P(A) e 3052 P(A| B))P(B;)

P(B|A) = Be F.

P(B; | A) = ieN.

Proof. We have

_P(BNA) P(ANB) P(A|B)P(B)
P(B|A) = P(A) — PA) =« PA) -
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4.2 Independence
4.2.1 Definition and properties

If P(A| B) does not depend on B, then P(AN B) = P(A| B)P(B) = P(A)P(B).
This motivates the following definition of the notion of independent events.

Definition 4.4 (Independence)

Let (Q, F,P) be a probability space, n > 2.

1) Ay, ..., A, € F are independent if P(N;cr Ai) = [Ticr P(Ai) VI C{1,...,n}.
2) Aj, ..., A, C F are independent if Ay,..., A, areVA; € A;,i=1,...,n
3) A C F,iel, are independent if A; ..., A;, are V{i1,..., i} I, n>2.
4) Random elements X;, i € I, defined on the same probability space are inde-
pendent if o(X;), i € I, are independent.

In particular, rvs are independent if Xi:1(3i1)7-~-7X¢;1(Bin) are independent
V' Bi,,..., Bi, € BR), {i1,...,in} € I, n > 2. And random vectors are inde-
pendent if X_l(Bil), e ,X;l(Bin) are independent V B;, € B(R%),... B; €

[ in

BR™), {iy,...,in} I, n>2.

© Marius Hofert Section 4.2 | p. 147



Example 4.5 (Factorization # independence)
Consider rolling a fair die twice, so Q = {(w,w2) : wj € {1,...,6},5 = 1,2},
F=P), P(A) = %, A € F (Laplace probability space). Let

Aq = "first roll < 3", Ay = "first roll is 3,4 or 5", A3 = "sum is 9".

We show that P(A; N Ay N Ag) = P(A;)P(A2)P(As) but no two of the three
events are independent.

= P(A)) = 5 =P(Ay). P(43) =P({(3,6),(4,5).(5,4),(6,3)}) = 5.

u P(Al NAsN Ad) = P({(?), 6)}) = 3716 = P(Al)P(AQ)P(Ag)

= We have

B(A1 N Ay) = B("first roll is 37") = o = é;ﬁi = P(A1)P(A4y),
P41 N Ag) = P{(3,6)}) = 5 # 1 = P(41)E(dy),
P42 1 Ag) = P({(3,6), (4,5), (5, 0}) = = = 15 # 72 = P(42)P(4g)
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Example 4.6 (Pairwise independence - independence)
Again consider rolling a fair die twice, so Q@ = {(w1,w2) : w; € {1,...,6},5 =1,2},
F=P(Q), P(A) =3, A€ F. Let

Aq = "first roll is even”,

Ao = "second roll is even”,

Az = "both rolls are even or both rolls are odd”.

We show that A4, A5, A3 are pairwise independent but not independent.

= First, P(A;) = 3 = P(A4), and P(A3) = P(“both even”) + P(“both odd") =
9 49 18 _1
36 736 36 2

® Then
“ " 9 1 11
P(A; N Ay) = P("both are even”) = F¥=-1-3 3" P(A;)P(Asz),
P(A; N Az) = P("both are even”) = P(A;)P(Ajs),
P(As N As) = P("both are even”) = P(Ay)P(As3).

" P(A; N Ay N As) =P(“both are even") = 1 # £ = P(A;)P(A2)P(As3).
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Lemma 4.7 (Independence via generators)
Let (2, F,P) be a probability space. If A; C F, i € I, are independent 7r-systems,
then o(A;), i € I, are independent. If {A;};c;r C F are ind., so are {AS}icr.

Proof. For n > 2, let {i1,...,i,} C I and fix A;, € A;,, k = 2,...,n. Let
D={AecF PANA,N...0A;,)=PA)T]}_5P(A;,)} (good sets). Then
i) Q€D (by def. of independence of A;,, k=2,...,n) vV

i) A€ D implies that A € D, since

p(4n k@ R P<k@ A\ 4) = p(k@ 4,0\ (4n k@ )

= #(A) _P(Am A a)

k=2
n
2, [1P0) -2 [T Peaa) = a9 [T P
k=2 k=2
i) If {A;}ien €D, AinNAj =0 Vi# j, then +Z 1 4; € D since

p((@lA> mkﬂ2,4)— P(Q(A "N 4)) 5 ZI}P’<A mkﬂ2A)

= k=2 =
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ERCY ﬁmm) - TT2(4) - B4
i=1 k=2 i=1
= e

pe(Ba)

® Hence D is a Dynkin system. Since A;,,...,.A;, are independent by ass., D also
contains A;,. By ass., A;, is a m-system = o(A;,) CD=o0(Ai), Aiy, ..., Ai

in

are independent = o(A;,),0(Ai,),...,0(A;,) are independent.
iteratively 2 n

{A;}ier € Find. = {Ai}iel with A; = {A;} areind. m-systems = {0 (A;) }ier
are ind. Since AS € 0(A;), ¢ € I, we have that {A$}cr are ind. O

Lemma 4.8 (Grouping lemma)

Let (Q, F,P) be a probability space. If A; C F, i € I, are independent m-systems

and I = W;c; I;, then o(U;cs, Ai), j € J, are independent.

Proof.

» ForjeJ, A = {Nicj, Ai - Ai € Ai, I; C I, |Ij| < oo} are 7-systems.
{Ai}ier areind. m-sys. = {Ay, }jes are ind. m-sys. = {o(Ay,)}jes are ind.
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" We now show that o(U;cs, Ai) = o(Ay;), which implies the statement.
“"C"Viel;wehave A;  C A Co(Ap) = Uielj Ai Co(Ar)

takefj = {i}

0 (Uier; Ai) € 0(5413')' .
YOI A € A i € I C I, || < oo, then A; € Uiey, Ai € o(Useq, Ai)
VZ € IJ o-algebra mlefj AZ € U(Uielj Al) deﬁj AIJ g U(Uielj Al) smallest

o(Ar,) € o(User, Ai): O

smallest

4.2.2 Zero-one laws

A zero-one law is a result that states that an event must have probability in {0, 1}.

Theorem 4.9 (Borel-Cantelli (BC) lemmas)

1) If {A;}ien CF, Y2 P(A4;) < 00 = P(A,, i0) =0 (BC1).

2) If {A;}ien C F are independent, 3252, P(4;) = oo = P(A,, io) = 1 (BC2).
In particular, for independent {A;}ieny C F, P(A, io) € {0,1}.

Proof.
1) P(An i0), =, PG Uit A) S BUR, A) < X2, B(Ay) 0.
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2) By assumption, we must have >-72 P(A;) = oo Vn € N and thus

P(A,, io) LiZ)P(ligLs;p Ap)=1-— IP’((liern_)solip Ap)°) = 1— P(hnngicgf AL)

’ L122)
Pl 4D 71 =Pl [ 4)
o OS’H
ot 1 _ 15 e\ — 1 _ 1 c
=t ,};f%op(kg Ak) =t i, 1] PO

=17P(Ak) < 716_]}»(‘4]6) D

Inl

11—z
n—oo

>1— lim e 2 P(AR) — 1.
7
Definition 4.10 (Tail o-algebra, tail events)
Let (2, F) be a measurable space and A4, C F, n € N, w-systems. Then

T =M o(Uns, Ak) = N2y o(Ap, Apga, ... ) is the tail o-algebra and its
elements are tail events.

Theorem 4.11 (Kolmogorov’s zero-one law)

Let (2, F,P) be a probability space and A, C F, n € N, be independent
m-systems. Then P(A) € {0,1} VA e T.
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Proof. Let T, := o(U}Z{ Ax), n € NU {c0}.

i) ByL. 48andass., 7, =o(lJ] | Ay and o(U;2,, Ay) are ind. o-algebras ¥ n.

i) T = Moty o(Upzn Ax) € (Ui, Ax) Vo € N %7 Tn, T are independent
VneN = Un2y Tn, T are independent.

i) |~ 7, is a m-system since A, Ay € Uy Tn = Ai € Ty, i = 1,2 =,
A1, A2 € Trax{nina} A1 N A2 € Thaxgniney € Unzr Tn

max{n,ny} o-ale:

iv) = o(LU>2, 7,), T are independent.

v) ol 7)) N CQT"H o(Upz1An) = 7o And T, € Too = UpZy Tn € Too =
o(lUp2 Tm) € Tw. Hence o(lU," T) = T = Teo, T are independent.

vi) Since 7" = ;2 o(UpZ,, Ax) < o(Urz; Ai) = T, every A € T is indepen-
dent of itself = P(A) = P(ANA) = P(A)P(A) = P(A)2 = P(4) € {0,1}. O

= Kolmogorov's zero-one law is often applied to independent events (A, = {4,},
n € N) or rvs (A, = o(X,), n € N).
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® In case of rvs, note that o(U;Z,, 0(Xk))= o(Xy, k> n). So

ef.

OO

T= ﬁ U( G U(Xk)> =) o(Xn, Xnt1,--.). (2)

n=1 k=n n=1

Example 4.12
Let (X,)nen be a sequence of independent rvs.

1) Ai={we QY72 Xi(w) converges} = {w € Q: 372, Xi(w) converges}
€ o(Xp, Xnt1,...) VneN= A e ML, o(Xn, Xpt1,...) =T

can show

= P(302; Xn converges) € {0,1}.

2) A:= {wEQ:limnﬁooXn(w)ZCER}:{wEQ:Iim,HOOM:

n

ceR € o(Xm, Xm+1,-..)VmeN ﬁAGﬂglo:la(Xm,XmH,...)ﬁ

= P(limp 00 Xp =c€R) € {0,1}.
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4.2.3 Independence of random variables
Question: Is there an easier way to check independence of rvs than by definition?

Theorem 4.13 (Characterization of independence of rvs)

Let (2, F,P) be a probability space and X; : Q@ — R, i € I, be

rvs. Then X, ¢ € I, are independent iff Vn € N, {i,...,in} C I,

IFD()(Ll S 'TZ'] ). Xln — TLVL) H ( S '/I;ik>’ V:E/L'l’ te 71:7‘71 € R

Proof.

“=" X i€l ind =o(X;), i€l ind.def;:oxi;l((—oo zi,]), .. .,X;l((—oo xin])
are ind. inl, ey Ty, € Rﬁ P(X“ < Liys - - in < $1n) = (ﬂk 1{
i }) = P(Mizy X5, (=00, 4,)) = TTiey PO (—o00,24,])) = Hk 1
]P)(sz < ﬂilk) Vl‘il, cey Xy, € R.

“«<": As preimages are closed under intersection, A;, = {XZ-;]'((—OO7.’17])}$€R,
k=1,...,n, are m-systems = A; ..., A;, areind. = o(A;, ). ..., 0(A;,)

areind. Now o (A;,) = U(Xi;I({( 00, &]}zer)) = = Xizl(g({(—oo,f]}meR))
= X, '(BR) = o(X;), k=1,...,n = X;,..., X;, areind. O

R 2241)  k tn
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Corollary 4.14 (Equivalent ways to check independence)
1) Rvs Xy, ..., Xy with X = (X1,...,X4) ~ F and margins Fi,..., Fy are
mdependent iff

d d
Flo)=P(X <z) = H (X; <zj) =[] Fia;), =eR
— j=1

2) If F' admits continuous partial derivatives with respect to each component once
in supp(F'), then F' is absolutely continuous with density f(x) = %F(m)
and X,..., X, are mdependent iff

a4 d d
flx) = mF(m) ) ]1:[1 %Fj(ﬂﬁj) = Jl—Il fi(z;), x € supp(F).

3) Similarly, for discrete X = (Xy,...,Xy) with supp(F};) = {zj1,zj2,...},
X1, ..., Xy are independent iff f(x) = ?:1 filzj), « € H;-lzl supp(Fj).

4) When using A; = {X; Y((2,00)) }aer in the proof of T. 4.13, we see that
X1,...,Xg are mdependent iff Fz) = [1]_, Fj(z;), = € RY one can also
see “=" from L. 3.18 by induction.

Question: Are functions of independent rvs independent?
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Proposition 4.15 (Functions of independent rvs are independent)
If X;;,i €N, j=1,...,d;, are ind. rvs and h; : R% — R are (B(R%), B(R))-
measurable, then Y; = hi(X;1,...,X;4,), ¢ € N, are independent rvs.

Proof.

1) X;;,i€N, j=1,...,d;, independent = o(Xij),1eN, j=1,...,d; are
independent o-algebras = U(U?"Zl o(Xi;)), i € N, are independent.

2) For X; = (X;1,...,Xig4,), it is straightforward to check that 7; := {B €
BR%) : X;(B) € o(U%, 0(Xi;))} is a o-algebra. Let B = [[IL, B; €
B(R®). Then X7(B) = Mia Xy (By) € a(UfLio(Xiy) 3 BEF,

= B(R? )CFi o f B(R%). ™

3) Therefore, VB € B(Rd) we have X; '(B) € J(U;li:1 (X)), so X, is

(J(Ujf' Lol B(R%) ) measurable, i € N. As a composition, Y; = h; o X

is (O’(U? 1 U(X J)) B(R)) measurable Vi € N. Therefore Y; is a rv.
4) o(Yy) 2 Y (B(R),= X' (hi ' (B(R)) € Xfl(B(Rdi))QO(U?":l o(Xi;))-

5) By 1), o (UJ 10(Xi5)), i € N, are independent and o(Y; )CJ(U;li 10(Xi4)),
i €N, so0(Y;), i €N, are independent = V;, i € N, are mdependent O
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Question: How can we construct independent rvs?

Proposition 4.16 (Construction of independent rvs)
For dfs F1, ..., Fy, there exists a probability space (£, F,P) and independent rvs

X; ~ F}, ]—1,...,d.
Proof.

= Since Fy,...,F; are dfs, T. 2.48 2) and E. 2.29 imply that (92, F,P) =
(R%, B(RY), H;’Zl AF;) is a probability space.
® Projections are continuous = they are measurable = X;(w) = m;(w) = w;

are rvs and, by P. 3.10, X (w) = w is a random vector, w = (w1, ...,wq) € R%.
Since

d
F(:c):P(X<$):P({w69:w<m}):IP’<ﬂ{wj ER: w; ng})

=1 4

d
= IP’(H —00, Tj ) = H AF; ((—00, 7)) imy H Fj(z;), =xe€ R,
j=1 j=1

X1,..., X4 are independent by C.4.141).
® Vk#j, letting x5 — oo implies P(X; < z;) = Fj(z;), s0o X; ~ F; Vj. O
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m |f Fj = ... = Fy; =: F, one says Xy,...,Xy are independent and identi-
cally distributed (iid) from F or independent copies of X ~ [F (notation:
X1,...,. Ny ForXy,...,.Xg~F).

® |nfinite sequences of independent rvs can be constructed with Kolmogorov's
extension theorem.

Example 4.17 (Countable mixtures through conditioning)
= Conditioning can be used to construct flexible distributions from given ones.

® |f I ~ Fy with pmf (p;)ieny on N and X; ~ F; Vi € N are independent, then
X = X, (interpreted as X if [ =1) (3)
follows the mixture (distribution) of Fy, Fy, ... wrt FT.
® The df of X is
Flx)=P(X<z)=P(X;<z) = i]P’(XI <z|I=49)P =1)

prob. pa
oo o0 o0
= ZpiIP’(Xi <z|[l=i)= ZpﬂP’(Xi <z)= Zp,;Fi(:n), x e R
i=1 i=1 i=1
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If F; has density f; Vi € N, then X has density f(x) = 32, pifi(z), * € R%
Using [ instead of >, an extension to uncountable mixtures is possible but
requires more work since if, e.g., I ~ U(0,1), then P(/ =i) =0Vi € I, so
P(X; < x|l =1) is not defined anymore. Nevertheless, sr (3) is still valid.

4.2.4 Sampling

If X1,..., X, ~F, then X1,..., X, is a random sample from F.

Applications often require to generate realizations of X1,...,X,, = F, so to
sample from F or X ~ F.

There are many algorithms known for generating realizations of U ~ U(0, 1) with
a computer, so-called pseudo-random number generators. They are reproducible
once the seed is fixed, the first number in the produced sequence.

By P. 3.30, it suffices to know how to construct realizations from U ~ U(0, 1)
and how to evaluate the gf F'~! of the df F in order to sample from X. This
method is known as inversion method for sampling X ~ F. Extensions to
random vectors X = (Xi,..., X ) are typically based on srs (= realizations
r=(x],...,z))" € Rwd)
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= There are also other sampling algorithms known for how to transform U(0, 1)
realizations to realizations of a given distribution.

Example 4.18 (U(0,1) and N(0,1) samples)
Realizations z1,...,x, of Xi,...,X,, n = 1000, for U(0, 1) (left) and N(0,1)
(right):

U~ U©.1)
X~ N(©.1)

1000
1000

Sample size n
Sample size n

0 200 400 600 800 1000 0 200 400 600 800 1000

Index i Index i

There is no visible structure (= uniformity) for the U(0, 1) realizations. The N(0, 1)
realizations are dispersed around the location ;= 0. The larger o (here: o = 1),
the larger the dispersion. The probability transform can be used for assessing

whether a sample has a continuous F' as df.
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Example 4.19 (Sampling of edfs)
® An edf F),, can be written as

n
1
FII(‘,B) = Z - [Xl,oo) Zp F 7 S Rda
=1
forp; =, i=1,...,n, (the pmf of U({1,...,n})) and Fi(x) = Lix, o0)(T)
(a degenerate df corresponding to the point mass at X;). Therefore, F), is a
mixture which puts mass 1/n on each X;.

» Withsr I = [nU]| ~U({1,...,n}) for U ~ U(0, 1), we have the sr
X(“("‘ ~ Fn.

(3)
We can thus sample F), by first drawing I ~ U({1,...,n}) and then returning
X7, so by randomly drawing from X7, ..., X,.

" This idea is applied in the “bootstrap”.

= |t remains valid even if there are ties (i.e. equal realizations) among X1,..., X,.
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4.3 Dependence

Question: How can we quantify dependence between X1,..., X4, d > 27

Definition 4.20 (Copula)
A d-dimensional copula C'is a d-dimensional df with U(0, 1) margins.

Proposition 4.21 (Characterization of copulas)

A function C : [0,1]% — [0,1] is a d-dimensional copula iff

1) C(u) =0if 35 € {1,...,d} such that u; = 0 (groundedness);

2) C(1,...,Lu;,1,...,1) =uy, uj € [0,1], V5 (U(0, 1) margins); and
3) ApplC=>0v0<a<b<1 (d-increasingness).

" As dfs with support in [0, 1]¢ (instead of RY), 0 has now the role of —oco (lower
endpoint of the support) and 1 that of oo (upper endpoint of the support); see

R. 2.49 5) for how to extend C to R

= |n practice we never find data with perfect U(0, 1) margins. However, we will

see later why copulas are useful nonetheless.
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Example 4.22 (Fundamental copulas and srs)

1) C(u) = ;-1:1 uj, u € [0,1]¢, is a copula (the independence copula) since
U~CforU=(U,..., Ud) with Uy, ..., Us < U(0,1).
Proof. P(U < u) = [Ij- 4 P(U; < uj) = H;-lzl uj, u € [0,1]%.

2) C(u) = M(u) := mm{ul g}, w € [0,1]9, is a copula (the comonotone
copula) since U ~ C for U (U,...,U) for U ~U(0,1).
Proof. P(U < u) =P(U < uy,...,U <wug) =P(U < minfuy,...,uq}) =
min{uy,...,uq} = M(u), u € [0,1]%.

3) C(u) = W(u) := max{(> ] yuj) —d+ 1,0}, w € [0,1]%, is a copula (the
countermonotone copula) for d = 2 but not d > 3.
Proof. For d = 2, (U,1 — U) satisfies P(U < u1,1 —U < uy) =P(1 —uy <
U <wup) =max{u; — (1 —u2),0} = W(uy,ug). For d > 3, see E. 2.41.

Caution: Never blindly move from P-computations to F-computations, e.g.
blindly applying P(1 —us < U < uy) = u; — (1 — ug) is only correct if
uy > 1 — ug, otherwise you get u; — (1 —ugz) <0 7.
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<tributions: bottom):
Copulas II, M, W (top) and corresponding samples (mass distributions; bottom)
0 , VL,

N(uy, uz)
W(uy, uz)

OSNEAKS
o 32'3'3%"3020.‘0 4
N s
OWWWM%
00 AL O LSRN

{00

00 0.0

00 0.0
00 0.0

U,
U,
U,

Uy
Us
Ur
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The importance of copulas is due to the following result.

Theorem 4.23 (Sklar (1959))
1) For any df F' with margins F1,..., Fy, 3 a copula C such that

F(x) = C(Fy(x1),. .., Fy(zq)), xeR% (%)
C' is uniquely defined on H;lzl ran(F;) and there given by C(u) =
F(F; Y (w), ..., Fy '(ug)), w € [T}, ran(F}).

2) Given any copula C and univariate dfs Fi,..., F;, F' defined by (x) is a df
with margins F1, ..., Fy.

Proof. We only provide a proof in the case where F1, ..., Fy are continuous.

1) Let X ~ Fand U = (F(X). ..., Fy(X,)). By the probability transform, U
has U(0, 1) margins, so U has a copula, say C, as df. Since X Fi 1 on supp(Fy)

L.2531)
FyNF(X5) = F MU, 5 =1,...,d, we have

Fle) =P(X; <a; Vi) = P(E;H(U)) < 2;Y)) | =, BU; < Ej(a;) V)

= C(Fy(x1),..., Fylrg), xeRY
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so (' satisfies (). It is uniquely given by C(u) = ) C(Fl(Fl_l(ul)),...,

L.2.532

&ug%mm)ﬁFUT%mL“wﬂfwwLuEWJH

2) Let U ~ C and X = (I, "(17)).....F, "(U,)). Since

P(X <xz) = PU < Fi(x1),...,Uq < Fy(zq))

L.2.533)

= C(Fi(x1),...,Fy(xq)), xeRY,

F defined by (x) is a df (namely that of X') with margins F, ..., F; (by the
quantile transform). O

Remark 4.24

1) The proofs of both parts are constructive. Part 1) utilizes the probability
transform (d-times) and Part 2) the quantile transform.

2) Part 1) allows us to decompose any continuous F' into its copula C' and
the margins F,..., Fy of F. C is thus the function which contains all the
information about the dependence between X1,..., Xy (as it tells us how to
combine the margins F1, ..., Fy to get the joint df F'). This is used in statistical
applications (e.g. estimation).
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3) Part 2) allows us to construct flexible new multivariate dfs /. This is used in
probabilistic applications (e.g. model building, stress testing), e.g. in finance,
insurance or risk management (especially under information asymmetry).

4) By L. 2,50, |C(b) — C(a)| < Z?Zl b; — aj|, a,b € [0,1]¢, so all copulas are
(uniformly equi)continuous, so F' is continuous iff F,..., F; are. However,
if C' does not have a density, then F' is not absolutely continuous even if all
Fy, ..., Fy are; see E. 3.22, where we chose C' = M.

5) If F admits continuous partial derivatives with respect to each component once,
then C' admits a density, given by

_F N (w), -y (ua)
c(u) = d 1
[T5=1 f5(F; (uy))
where f; denotes the density of I}, j =1,...,d.

, we(0,1)7 (4)

We say that X ~ F' has copula C'if (x) holds, i.e. if F(x) = C(F1(x1), ..., Fi(xq)),
x € R?, for some margins F1,..., Fy.
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Theorem 4.25 (Invariance principle)
Let X = (X;,...,X4) ~ F with continuous margins Fi, ..., Fy and copula C.
If T; 1 on supp(F}), j =1,...,d, then (17(Xy),..., T4(X4)) has unique copula

(' (so the same copula as that of X).

Proof.

= |dea: Find the df of (77(X4),...,T4(Xy4)) and its margins (here: the latter
first, to verify continuity), then apply Sklar’s theorem.

= As T} 1 on supp(F}), T; has at most countably-many discontinuities. Assume
wlog that 7 is right-continuous at its discontinuities (since X is continuously
distributed, P(X; = x) = 0 Vx, so we only change T;(X;) on a P-null set).

= By right-continuity of Tj, TJ(TJ*l(x])) xzj Vaj € ran(T}). The df G; of
T;(X;) is thus

Gj(x;) = P(T3(X;) < 2j) =, P(15(X;) < T5(T; (x)))
= o P ST (ay) = Fy(T; Hxy), ;€ ran(T)),

T Ton;pp(FJ) J

Since Tj(X;) puts no mass outside ran(7}), G;(x;) = Fj(T]-*l(;(:j)), zj € R.
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= ByL.2534), Tj_ is contlnuous on ran(7}). And F} is continuous by assump-
tion. So G; = Fjj o T] is continuous on ran(7j). By definition, G; puts no
mass outside supp(7}(X;)) C ran(7}), so G, is continuous on IR.

® Then the joint df of (T1(X1),...,Tqa(Xq)) is
PTH(X)) < V) 2 P(T3(X) < 2 V) "5 P(XG < T (xg) V)

of T (x ) L.2.533)

= P(X; < T 'ay) Vj) = F(IT (1), - Ty H(wa))

cont.

= C(FU(TT (21))s - - Fa(Ty N (24)))

Sklarto '

— C(Gy(x1), ..., Gylzry), =eRL

def.
Since T;(X;) ~ Gj, j = 1,...,d, Sklar's theorem implies that (77 (X1),...,
Ty(X4)) has copula €' and C'is unique since Gy, ...,Gq are continuous. ]

The invariance principle is fundamental to copula modelling, it identifies transfor-
mations we are allowed to apply (componentwise) to multivariate data without
changing their dependence.
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Corollary 4.26
Let X = (Xy,...,Xy) with continuous margins Fi,..., Fy. Then X has unique
copula Ciff (F1(X1),...,Fq(Xaq)) ~ C.

Proof. Let U = (1‘1()(1) ..... 1‘1]()&7(1)).

“=": Since F; 1 supp(F}), j =1,...,d, the invariance principle implies that U
also has unique copula C. By the probability transform, the margins of U
are U(0, 1), so, by Sklar’'s theorem, the df of U is C.

= X = (P RX)), . F N (Fa(Xa)) = (BTN, By (U).
By assumption, U ~ C. And by L. 2.53 4), Fj_1 1 on [0, 1] (which contains
the support of U(0,1)), j =1,...,d. By the invariance principle, X thus

has unique copula C. O

Say we have realizations of X; = (X 1, X; 2) SEi=1,...,n=1000, from two
bivariate dfs F' with continuous margins Fi, F5.

Question: For which of the two samples is the dependence between X; ~ F} and
Xo ~ Fy larger?
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Xz
Xz
4
I

1000, N(0,1) margins

1000, Exp(1) margins

Sample size n
Sample size n

X1 Xy

This is not easy to answer as the marginal dfs in the two plots differ. If we apply
the respective [, I to each of the samples (in applications, use the edfs F}, 1, F}, 2
= componentwise scaled ranks known as pseudo-observations), we obtain:
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1.0

0.8
0.8

0.6
1
0.6
1

U,
U,

1000, U(0,1) margins
0.4
1000, U(0,1) margins

0.2
1

0.2

0.0
Sample size n
0.0
Sample size n

U U

= So the realizations of the two X ~ F only differed in their margins F\, F5,

= By C. 4.26 (or the proof of Sklar's theorem Part 1)), we indeed see
, where

= This allows us to study dependence questions in terms of the realizations of U.
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If we apply N(0,1) and Exp(1) (left) and N(0, 1) and Par(2) (right) qfs (Exp(1):
df F(z) =1—e7%; Par(2): df F(z) =1—1/(1+ x)?):

[=3
@

o

40
1

1000, N(0,1) and Exp(1) margins
Xz
20 30
1 1
1000, N(0,1) and Par(2) margins

Xy

Xy

T
3

T
4

Sample size n
0
1
.
%
.
1]
.
.
e
* .
."'
N
.
| .
N [
Sample size n

m Sklar's theorem Part 2) = We see realizations of X with copula C' and the

chosen margins.

® |nvariance principle = the underlying copula (' is the same in the last 6 pictures.
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For (Xi,...,X,) ~ F with continuous margins F1,..., F; and copula C, the

invariance principle implies the following meanings of II, M, W for F"

" Xy,...,Xy are independent iff C' = II.

» X, =T;(X1), j=2,...,d, as. for the strictly increasing T}j(x) = Fj_l(Fl(CU))
iff C' = M.

» X, = T(X)) a.s. for the strictly decreasing T'(x) = Fy, ' (1 — Fy(z)) iff O = WW.

These are intuitive (but extreme) forms of dependence.

W and M are also extremal bounds analytically as the following result shows. We
use it later to derive bounds on dependence-related summary statistics.

Theorem 4.27 (Fréchet—Hoeffding bounds)

1) For any d-dimensional copula C, one has 11" (w) < (/(u) < M(u), w € [0, 1]¢.
2) W is a copula for d = 2 but not for d > 3.

3) M is a copula Vd > 2.

Proof.
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1) W < C: ByL.250, 1-C(u) = C(1)—C(u) < S (1-u;) = d=30_, uj,
so C(u) > (Z;l:l uj) —d+ 1. Clearly, also C(u) > 0, so C(u) >
max{(zgzl uj) —d+ 1,0}, which is W(u).

C < M: ByL.2375), any d-increasing F' is componentwise increasing. There-
fore, C(u) < C(Luz,...,uq) < C(l,...,1 u51,...,1) :%

u; Vj=1,...,d, and thus C(z;jglm;;in{ul, coougt = M(u).
2) By E. 4.22 3), W is a copula for d = 2. By E. 2.41, W is not a copula Vd > 3.

3) By E. 422 2), M is a copula Vd > 2. O
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5 Integration and expectation
5.1 Construction

5.2 Calculating expectations

5.3 Variance, covariance and correlation

5.4 Multivariate notions

5.5 The Lebesgue—Radon—-Nikodym theorem
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5.1 Construction
Question: What value do we obtain on average when rolling a fair die?

= Q={1,...,6}, F=P(Q), P(4) = ||QA|‘, A € F (Laplace probability space).
® Then

Z “outcome” - “probability to obtain this outcome”
“all outcomes”
6.1
=Y w-Pwh) = >i s =35 = > X(@P{w}).
wGQ =1 WESZ

= |f Q is uncountable, we could consider (if this exists)

X) = /X(w)d]P({w}) _. /Xd]P’.
notation Q notation Q

Question: Is there a general construction principle for E(X) for general measures

1 (instead of P) that also answers the existence question?

= |f (2, F, ) be a measure space and X : () — R measurable, one can construct
a notion of [, X' dy in a three-step process known as standard argument (also
algebraic induction). Let Ry := [0,00] and R := [~o0, oq].
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1) One starts to define [, X du for simple X.
2) One then extends the notion of [, X du to non-negative (F,B(R.))-
measurable X : QO — R,

3) Finally, one extends [, X du to (F, B(R))-measurable X : Q — R.
Complex-valued X can be handled by their real /imaginary parts.

5.1.1 Expectation of simple rvs

Let (2, F) be a measurable space. Recall that a rv X : Q@ — R is simple if it has
the form X = >"""  x;1 4, forsomen €N, z; € R, i =1,...,n, and a partition
{A;}, CF of Q; {A;}, C F is required for measurability of X.

Example 5.1 (Examples of simple rvs)

Let X =3" 2314, and Y = 377" yr1p, be simple. Then one can easily verify
that the following are simple rvs:

1) aX +bY =32 p(ax; + byk) La,ng,

2) XY =3, p(wiyr) La,na,

3) min{X, Y} =37,y min{z;, yx } La,np,, max{X,Y} =37, max{z;, yx} La,np,
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Definition 5.2 (Expectation of simple rvs)
Let X =37 z;14, be asimple rv. Then

E(X) := QXd,u, = Zrm/z,(A

is the expectation (or mean, integral) of X (or its df ') wrt u with the convention
0-00=0if z; =0 and p(A4;) = oo for some i. Furthermore, let [, X dp =

E(X14)VAeF.

Lemma 5.3 (Properties of simple rvs)

Let X,Y : Q — R be simple. Then
1) X > 0 (pointwise) = E(X) > 0 (non-negativity);

2) E(aX +b0Y) = aE(X) +0E(Y) Va,b € R (linearity);

3) X <Y = E(X) <E(Y) (monotonicity);

4) X >0 = v(A):= [, X duis a measure on (2, F); and
5) E(14) = u(A), Ae F.

Proof.
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1) X >0 (pointwise) = z; > 0,i=1,...,n = E(X) =37, z;u(A;) > 0.
2) aX +bY = 3 p(az; + byk) L a;np, is again simple, so
E(aX +bY) = Z(awi + byr)p(A; N By)
ik

n m m

m“%t”'y azl’z‘z pn(A; N By) + bz ykz p(Ai N By)

=1 k=1 k=1 =1
= a Y wip(A) + 0> yen(Br) = aB(X) + BE(Y).
i=1 k=1
3) X <Y =Y -X>0issimple = E(Y)=E(Y - X) + X)
E(X) 12) 0+ E(X)=E(X).
4) X >0= v(A):= [, X duis a measure on F:
i) XZOéZ/(A)Z)OVAE.F,SOZ/I./—"—)[0,00].
i) () = o X du = Jo XTod = o 0dn 2 0u(Q) _=

imple convention

E(Y — X) +

2
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i) Let X =37 | x;1p, be simple. If {A;}ien € F: AiNA; =0Vi#j,
y<i@1A) /w X ZE(X1ye _)dfxE(ixjnBjmwilAi)
= Zx3u<B N UA) U_a:dd_zn%x]iu (Bj N A;)
ps i
(:ij:i: (B 01 A “ZE<Z%HBM)::Z

where (%) holds since the series is absolutely convergent (possibly oo in

which case Ji : v(A4;) = oo, so the claim also holds) and thus, by the
Riemann series theorem, any reordering converges to the same value.

5) E(HA) = E(l -1p+0- ]1Ac) = 1 ,LL(A) —|—O'M(AC) = ,u(A) VA € F with the

convention 0 - co = 0. O

5.1.2 Expectation of non-negative rvs

We now extend the definition of expectation to non-negative rvs X : Q — Ry =

0, 00] (potentially co; see R. 2.24 2)).
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Lemma 5.4 (Approximating sequence)

Let (2, F) be a measurable space. Then X : Q — R, is (F, B(R,))-measurable
iff 3 simple X,, : Q@ — R, X,, /X pointwise and uniformly on any set on which
X is bounded.

Proof. We call any such (X;,)nen an approximating sequence to X.
=" Let

[ [2"X] k-1
X, = nun{ on 7 :kZ::l o ]lel((@,z%]) + 1l x-1(n,00]-

By measurability of X, X, is simple. Also, since 2|z] < |2z], one can
verify that 0 < X, < X,,11 Vn e N.
B fX <n then0< X - X, < ﬁ T 0, so the convergence is uniform
in w (and thus pointwise) on any set on which X is bounded.
" If X(w) = oo, then X, (w) =n — o0, so pointw. convergence Vw € (1.
"<": Since X, is simple Vn € N, we know that X, is measurable Vn € N.
Similarly as in L. 3.12, one can show that, as a limit, X is measurable. [
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Definition 5.5 (Expectation of non-negative rvs)
Let X : Q) — R, be measurable. Then
E(X) := / Xdp:= sup E(Y)
Q

0<Y <X,
Y simple

is the expectation (or mean, integral) of X (or its df F') wrt p. Furthermore,
[y X dp:=E(X14)VAEF. The set of all (F,B(R,))-measurable X : Q —
R, is denoted by L, := L, (Q, F, ).

Lemma 5.6 (Monotonicity, scaling)

Let X, Y € Li. Then X <Y = E(X) <E(Y) and E(cX)=cE(X)Vec>0.
Proof. Monotonicity is clear by definition (supremum over a larger set cannot be
smaller). Now consider scaling. For ¢ = 0, scaling is also clear by definition (since
E(0) = 0). And for ¢ > 0,

sim

E(cX)= sup E(Y) = sup E(cZ) = sup cE(Z)=cE(X). O
0<Y<eX, Y =2 g<z<X, L5832 g<z< X,
Y simple Z simple Z simple
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Theorem 5.7 (Monotone convergence (MON))

If (X,

Jnen € Ly, X,, /' X (pointwise), then X € L, and E(X,,) " E(X).

Proof. We have X > X, > 0. Similarly as in L. 3.12, one can show that, as

ass. ass.

a limit, X is measurable. Therefore, X € L,. Since X,, ~* = E(X,) /=
lim,,—, o E(X,,) exists (possibly 0o).

<" Xn <X = E(Xp) E(X) Vi€ N = limg o B(X,) < E(X).

>

Let Y be simple, 0 <Y < X and 4,, :={w € Q: X,,(w) > aY (w)} for
€ (0,1). Then A,, is measurable (since X,, — aY is) and, as X, (w)
X(w) > Y(w) Vw € Q, we have A, / Q. Furthermore, E(X,,) =

constr.

E(Xn]lQ)L2 E(Xn]lAn) Lz CkE(Y]lAn) Vn € N. Then

lim E(X,) 2o lim E(Y1a,) = ,a lim v(A, )c:"":be'w av(Q) = aE(Y).

n—oo shown T—>00 -5.34 n—o0 n /' Q def.

For @ — 1—, we obtain lim,, oo E(X,) > E(Y) = lim, 0 E(X,) >

def. E(X)

E(X). O
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Lemma 5.8 (Properties of non-negative rvs)
Let X,Y € Ly, (Xp)nen € Ly. Then
1) E(X)=0iff X =0 a.e,;

2
3

)
) E(
4)
)
6) v

5

Proof.

1) If X

X,
IfIE

E(aX +bY) = aE(X) +bE(Y) Va,b > 0 (linearity);

net1 Xn) = 2t E(Xn);

/‘ X ae = hmnHOO E(X,) =E(X);

) < 00, then p(X = o00) =0, i.e. X is finite a.e.; and
= [, X dp is a measure on (Q, F).

= Y ;14 is simple, then E(X) = 0 & T = 0 or u(4;) =0

Vi=1,...,n<< X =0 a.e. Now consider X € L.
=" Let 4, = {w € Q: X(w)>1/n}, n € N. Then X > 11, and

"

wlUsZ1 Ap) = p({w € @ X(w) > 0}). Assume p(lJ;2, A,) >0 =
Sng o p(A,,) > 0 (otherwise p(Uneq An) < Do w(An) =07) =
E(X) > E(n“ Arl())si%::nio//(Ai,][,) >0 ¢.

VY S|mple with 0 <Y < X =0, we have Y =0 a.e., and thus by (%)

ass.

that £(Y) = 0, so E(X) = supo<y<x, E(Y) = 0.
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2) By scaling (L. 5.6), it suffices to show E(X +Y) = E(X) + E(Y). By
L. 5.4, 3(Xp)nen, (Yn)nen simple, non-negative: X, * X, Y, MY =
(Xn+ Yo )nen is simple non-negative and X,, +V, /X +Y = E(X+Y) =

limy, o0 B( Xy, + Y5) "2 limy, 00 B(Xp) + limp 00 E(Y,) = E(X) + E(Y).
3) E( © L X,) = (th%ozn 1 Xn) =, my e E(CR0 Xn) = limye

MON
1E( n) 7 2ne1 B(Xn).

4) n( ) S X (w) Vw € N¢: pu(N) = 0. Since X;, — X;,1ne = 0 a.e. and
X—X1ne =0ae, 1) implies E(X,,— X, 1nc) =0, E(X—X1yc) =0. By 2),
E(X,) =E(X,1ye), E(X) = E(X1ye). Therefore, limy, o0 E(X,,) = limy, 00
E(X,Lye) = E(XLye) = E(X).

5) Let 4, := {X >n},n € NU{oo}. Suppose p(As) > 0, then ]E(X)m%E(XIlAn)

>E(7”U1A )=nE(14,)=nu(4, fn ZAo;w(Aoo) — 00 4.

mon.

6) v(A) := [, X du is a measure on (Q2,F): i) v(A)= IE(XILA)>OVA€]:
so v : F — [0,00]; i) v(0) = E(X1y) = E(0) = 0 and i) If {A;}ien €

F:AiNAj=0Vi#j, then (22, A)=E(X ﬂU A)=E(SE X1a) =

def.

Yt B(X14,) = o1 V(4q). O
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5.1.3 Expectation of real-valued, measurable functions

" For X :Q — R, let X := max{X,0} > 0 be the positive part and X~ :=
max{—X,0} > 0 be the negative part of X.

m |f X >0, then X = XT and X~ =0, and if X < 0, then XT = 0 and
X~ =—X. Therefore X = X" — X and | X|= X"+ X .

= X is measurable iff X, X~ are (both “=" and “<" follow from C. 3.11 2)).

Definition 5.9 (Quasi-integrable, integrable)
Let X : © — R be measurable. If E(X1) < 0o or E(X~) < o0, X is quasi-
integrable and :

E(X) = /OX dp = E(XT) —E(X™)
is the expectation (or mean, integral) of X (or its df F') wrt p. Furthermore,
[4Xdp:=E(X14)VAeF. FE(XT) <ocoand E(X™) < oo, X is integrable.

If E(XT) =00 and E(X ™) = 0o, X is non-integrable. The set of all (F, B(R))-
measurable and integrable X : 2 — R is denoted by L' := L'(Q, F, j1).
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Remark 5.10

1)

If the integration variable is important, one also writes [, X (w)du(w). Fur-
thermore, some authors write [, X (w) pi(dw). If the measure is important to
denote, one also writes [£,,(.X).

Examples of quasi-integrable but not integrable X are sufficiently heavy-tailed
distributions on Ry (= E(X™) =0 < oo, E(XT) = ), e.g. X ~ Par(f)
with F(z) =1—(14+2)7% 2 >0, 6 € (0,1].

Examples of non-integrable X are two-sided heavy-tailed distributions, e.g. the
Cauchy distribution with density f(x) = m z e R

Since | X| = X 4+ X, we have that X is integrable iff | X| is integrable as a
non-negative rv, so iff E(|X|) < co. We thus have

L'={X:Q — R: X measurable, E(|X]|) < oo}.

We will see from L. 5.13 below that integrable rvs are finite a.e., hence the
definition of L! excludes the possiblity that (X = +00) > 0.
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Lemma 5.11 (Properties of quasi-integrable rvs)

Let X,Y be quasi-integrable.

1) FE(X7) < o0, E(Y ™) <ocorifE(XT) < oo, E(YT) < 00, then E(X+Y) =
E(X) + E(Y) (additivity).

2) E(cX) = cE(X), ¢ € R (scaling).

3) X >0 = E(X) >0 (non-negativity).

4) X <Y = E(X) <E(Y) (monotonicity).

5) [E(X)| < E(|X]) (A-inequality).

6) If u(A) =0, then [, X du =0.
Proof.

1) Z=X+Y = Z" -7 =Z=X+Y=X" - X" +Y" Y~ = 7"+

def.  def.
X" 4+Y =Z +XT+Y" S E(Zﬂ +EXT)+EYT) = E(Z7) +
Z < X7 +Y™

E(XT)+E(Y"). Wlog assume the case E(X ) < oo, E(Y ™) < o0 =

E(Z~ )<IE(X_) + E(Y™) < oo and we can thus subtract the expectmaontlons
of the three negative parts from (%) to obtain E(Z) = E(Z7) — E(Z7) =
E(XT)—EX ) +EYT)—E(Y ") = E(X)+E(Y).
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2) If ¢ > 0, then E(cX) = E((cX)T) — E((eX)) = E(cX™t) —E(cX™) =
CE(X*) — cB(X~) = cE(X). And if ¢ < 0, then E(cX) = E((cX)*) —
E((eX)™) = E(—cX™) —E(— cX*) = —cE(X7) - (- )IE(X*) = cE(X).

3) X>0=E(X) = E(X*) >0

4) i) By ass., X is);;asi—integrabni:..

i) Y —X>0=E(Y—-X)")=0<o00=Y — X quasi-integrable.
= E(Y) =E((Y - X) +X) D E(Y - X) + E(X) > E(X).

5) [E(X)] = [E(XT) —E(X7)| < [E(XF)| + [E(X7)] = E(XT) +E(X™) =
E(XT+ X7) =E(X]).

6) i) First consider X >0, s0o X14 > 0. Any simple Y =3>""", v;1p, > 0 with

Y < X14 mustsatisfy y;1p, < X1, t=1,...,n. Fori=1,...,n, we

thus have B; € A (and thus 0 < /J(B,-) < (A) = 0) or, if not, then we

must have y; = 0. Hence E(Y) =>11, z/,u( i) = 0

ii) By definition, [, X dyu =E(X14) = supo<y<x, E(Y) = 0.
Y simple I
iii) For general X, E(X14) = E(XT14) -~ E(X " 14) =0-0=0 O

© Marius Hofert Section 5.1.3 | p. 192



The following is needed for conditional expectations later.

Lemma 5.12 (o-additivity for expectations)

Let A, {A;}ien CF: A=W, A; and let Z be a rv such that Z1 4 € L', then
E(Z14) =32, E(Z14,).

Proof. E(|Z|14) = E(|Z14]) | < , oo and so E(Z714) < E(|Z|14) < o0
and E(Z714) < E(|Z|14) < oo. Therefore, E(Z14) = E((ZT — Z7)14) =
E(ZT14) —E(Z 14). By L. 5.86), v(B) =E(Z"1g), B € F, is a measure, so
o-additivity implies

E(Z+14) = v(A —V<UA> S u(A) = S E(ZH ).
i=1 i=1
Similarly for [£(Z~1 4). We thus obtain that
Z]E (ZT1a,) ZE(Z‘]IAZ.)

=1

0o o0
e Z E(Z*14,)~E(Z 14,)) ZE (ZT=2Z7)1a,) =) _E(Z14,)0

E(Z14) =E(Z714) —E(Z 1)
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Lemma 5.13 (Integrable rvs are finite a.e.)
If X is integrable, then u(X = £o00) =0, i.e. X is finite a.e..

Proof. X integrable = E(X 1) < oo, E(X7) < o0 o p(Xt =00)=p(X" =

) = 0= p(X = %00) = u({X* = 0o} {X~ = oo}) = u(X* = o) +
WX~ =00)=0+0=0. O

Proposition 5.14 (Properties of integrable rvs)

If X,Y are integrable, the following are equivalent:

1) E(X14)=EY1,)VAeF

2) E(JX-Y])=0

3) X =Y ae

Proof.

1) = 3): Let Z:= X—Y and assume u(Z # 0) > 0= p(A) > 0for A={Z" >
0} or A= {Z~ > 0}, wlog the former. Then 0 = E(X14)—-E(Y14) =
E(Z14) , =, E(Z71a) 57 Z*t14 = 0 a.e., a contradiction to
ZT > 0on A with u(A) > 0.
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3) =2): Apply L.581)to Z:=|X —-Y| e L.
2) = 1): [E(X12)~E(YLy)| = [B((X ~Y)1)] < E(X-¥[1a) <E(X -
Y[)=0VAeF. O

Lemma 5.15 (Fatou’s lemma)
If (X;)nen C Ly, then
E(liminf X)) <liminf E(X,,).
n— oo

n—oo
Proof. We use from analysis that, pointwise, lim inf,, o X, = lim, o0 infy>, Xj.
We thus have

0=E((0) < E(hlnlolngn) = E(lim inf X;) "= hIIOIO]E(lnf Xk)

mon. analysis n—o0 k‘>’fL inf ' n—

o hmlnfE(lni X)) < hmlnfE( n)-

)/ n—oo mon. M—>
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Theorem 5.16 (Dominated convergence (DOM))
If (Xn)nen C€ LY, Xn 25 X, [Xo| <Y VneNforY € L', then X € L' and
limy, o0 E(Xp) = E(X).

Proof.
® Byass, 3Ny € F: u(Nx) =0, limy, 00 Xp(w) = X(w) Vw € N%.
" Byass, INx, v € F: u(Nx,y) =0, [Xp(w)| £ Y(w) < 00 VweN§ .
" let N:= Nx UNx,y € F and, wlog, redefine X := (lim, 0o X;,)L1ne (a.e.
equal to the original X = lim,,_, X,,). As a composition, X is measurable.
= On N¢ |X,| <Y <ooVnéEN, sothat | X| <Y < oo and thus X € L, as
wellasY + X, >0and Y — X,, > 0.
1) E(V)+E(X) = B(Y4+X) ™" =" " E(lim infp, 00 (Y +Xp)) < liminf, o
in. on Fatou
E(Y +X,,) =E(Y) + liminf, . E(X,); and
2) E(Y)-E(X) = E(Y—X) """ =" E(liminf, 00 (Y =Xp)) < liminf, e
in. on Fatou
EY — X,) = E(Y) — limsup,,_, . E(X,,).

lin.

= liminf,, o E(X,)>E(X)> limsup,,_,., E(X,) > liminf, , E(X,). O
- 1 2
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Under DOM, we actually have the even stronger statement

7}1_)H§OE(\X — X,|) =0.
To see this, apply DOM to |X — X,,| = 0 and note that |X — X, | is dominated
by [X — Xu| < X[ +[Xa| < [X]+[V] € L.

Example 5.17 (Why domination is required)
Consider (Q,F,u) = ([0,1],B([0,1]), ). Let X, :=n*L(g,,) >0, n €N, (so
X, explodes on smaller and smaller set) and X := 0. Then X,, — X pointwise,

but

n2

E(Xn) =n*E(Lg1/n) = — =n — o0 #0=E(X).

n n — oo

Note that Fatou's lemma still holds, since

E(liminf X,)) =E(0) = 0 < o0 = l%lrll)ioréfE(Xn).

n—oo simple
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Corollary 5.18 (Expectation of infinite series)
Suppose (Xp)nen € L' : 2% E(|X,|) < 0o. Then 352, X,, converges a.e.,
© X, €L!and

E(an> =Y EX
n=1 n=1
Proof.
= B0 X)) =, S0 E(Xa]) S oo = V= 3000, | X[ € LY By L. 513,

dN € F : u(N) =0, Y(w) < 00 Yw € N Therefore, Yw € N€,
o2 1 Xn(w) converges abs. and thus converges, so >~ | X, converges a.e.

» Clearly, (>N, Xx,) € L' and V| X, 21 Xn everywhere (= 1st
and 2nd ass. of DOM V')
» Domination holds, since | >0, X, | < SN |Xn| <V eL'VYNeN (= 3d
ass. of DOM V).
= Applying DOM, we obtain that Z,, ( Xn €L} and
o0
E(;Xn) = ]\}iinmE(;Xn> = A}gnOOZE ;E(Xn). O
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5.1.4 L? spaces

For p € (0,00), let LP := LP(Q, F. ;1) with

LP(Q,F,p) == {X : Q = R : X measurable, || X||, :== E(|X[")}/? < oo};
note that X € L7 iff | X|P € L
If |X|P € L, E(XP) is the pth moment of X.
For p > 1, LP is a Banach space (complete vector space with norm ||.X||, =
E(|X[7)'/7; complete = every Cauchy sequence converges in the space). L? is a

Hilbert space (vector space with inner product (X,Y) = E(XY') that is complete
wrt the distance function d(X,Y) = || X — Y| induced by || X| = /(X, X)).
For integration, it makes no difference if we alter measurable functions on null
sets (see P. 5.14), e.g. by defining them to be 0 there. One therefore typically
views two X,Y € LP as equivalent iff X =Y a.e..

For p = o0, one defines || X || := esssup,, | X (w)| := inf{z > 0 : p(|X] >
x) = 0} (‘essentially the supremum’) and L>®(Q,F,pu) == {X : @ - R :
X measurable, || X||s < co}. One can show: X € L iff X is bounded a.e.

Important inequalities in LP spaces are:
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» Holder's inequality: For p,q € [1,00] : %+% = 1 (conjugate indices),
| XY < | X|,]|Y ]|, for all measurable X,Y : @ — R. Forp = ¢ = 2,
this is known as the Cauchy—Schwarz inequality (CSI). If p,q € (1,00) and
X el Y €LY then "="iff 3o, > 0: | X|P = B|Y | p-ae..

> Minkowski's inequality: || X +Y ||, < | X|l,+|Y], YX,Y € LP, p € [1, 0]

> Jensen's inequality: If (2, F,IP) is a probability space, X € L' and ¢ convex
(concave), then p(E(X)) < E(p(X)) (p(E(X)) > E(9(X))).

Proof. Wlog suppose ¢ is convex (otherwise consider —p). For any € R
there is a supporting line p(u) + m(x — ) of the graph of ¢ in u (if ¢ is
differentiable in p, take m = ¢'(n)) with () > p(p)+m(z—p), x € R.
With ;o = (X)), we thus have that () > ;(IEEEOXE)) +m(z—E(X)), z € R,
and thus p(X) > p(E(X)) +m(X —E(X)). Since E(E(X)) = E(X), we
have E(o(X)) > E((E(X)) +m(X — E(X))) = ¢(E(X)) +0. O

The convex p(xz) = |z| implies [E(X)| < E(|X|) (A-inequality), and
p

the concave o) =x7, x > 0,0 < p < ¢ < oo implies E(|X[P) =

E((1X]7) ) - (E([X]7)e < o0, s0 E(1X X

7) < oo = K(

P) < oo.
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E(|X1]9) < oo = E(]X|P) < oo also holds for general finite i, as we now prove.
Proposition 5.19 (LY C L, p < q)

If 1(2) <ooand 0 <p<q<oo,then L7 C LP and || X]|, < || X4 - ,LL(Q)%_%
Proof. If ¢ = oo, | X} = E(IX]7) < E(|[X][%) < [IX[EE) = [[X][5un($2)
e ||X|]p < || X oot (22 )1/p v'. And if ¢ < oo, then apply Hélder's inequality

W|th p<+ 1 >1and g+ ;L >1 (conjugate v') to get | X[} = E(JX|P-1) <

Holder

1XP s - ||1||q3 X — X 00 = X, < X,
Q). O
Remark 5.20 (Integrability of complex-valued measurable functions)

" X :0— Cis measurable if it is measurable wrt to B(C)  _= B(R?) =

B(R) ® B(R).

= A measurable X : Q — C is integrable if E(|Re(X)|) < oo and E(| Im(X)|) <
oo and then one defines E(X) := E(Re(X)) + iE(Im(X)).

= Since | X| = |Re(X)+iIm(X)] S |Re(X)|+ |Im(X)| < |X|+ |X]| = 2|X]|,
X : Q2 — C is integrable iff E(|X]) < 00, just as for X : 2 — R.
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5.2 Calculating expectations

Although important for deriving general results, we rarely calculate expectations of
X over () via the standard argument, but rather of F' or f over R d > 1. The
following result allows one to do that.

Theorem 5.21 (Change of variables)

Let (2, F, 1) be a measure space, (€', F’) be a measurable space, X : Q —
measurable and h : Q' — R measurable. If E(|1(X)]) < oo, then

/ h(X)dp = / hdpx

Q 0%

(short: E, (h(X)) = E, (h); verbose: [, h(X (w))dp(w) = [o h(w') dpx (w')).
Proof. We follow the standard argument, applied to / (not: h(X)).

1) Consider h(w') = 1 4/(w'), A" € F', and note that 1 /(X (w)) = Ly 14 (w)

since 1a/(X(w)) = 1 iff X(w) € A" iff w € X~1(A4) iff ILX_ 1ay(w) = 1.
Therefore

| @) dutw) g, [ 1 @) du) = [ L@ due)
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7 Eu(lx— (A))L535)N(X HA) o nx(A) 5] By (L)

;/ Ly (W) dpx (W) = / h(w') dpx (w').
By linearity of [ (see L. 5.11 1), 2)), the statement also holds for all simple h.
2) If he Ly, 3 simple hy, : ' — Ry with h,, / h (see L. 5.4), so

Eu(h(X)) = By lim hn(X)) = lim B, (hn(X)) = lim E, (hy)

ON 1,

MON MX( hm h ) Hx(h)

3) If h € L, then E,(h(X)) = Eu(hT (X)) — Eu(h™ (X)) = E,y(ht) —

def. 2)

EHX (h_) o EMX (h+ - h_) — EMX (h) O

def.

Remark 5.22

1) We typically consider the case where ;. = P is a probability measure, (0, F') =
(R, B(R?)), d > 1, and h : R? — R. Due to Px being characterized by the
df F' of X (see R. 3.16 1)), one writes d /" for dPx (see R. 3.16 4)), so

/h )dP = /Rdhd]P’X:/RdhdF = ,/Rd h(z) dF (2);
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in particular, if X; ~ Fj, j = 1,2, then F1 = F; = E(h(X1)) = E(h(X>)).
Jga h(x) dF(x) is also known as Lebesgue-Stieltjes integral of h wrt F'.
2) With the standard argument, one can also show the following two special cases:
» |f Fis discrete with pmf f with countable support {x;};en C R? (so
F(B) =Y ip.epn f(®i), B € B(RY)), then

/Qh,(X) AP = 3" h(a) ().

ieN
» |f I is absolutely continuous with density f (so F(B) = [z f(x)dx, B €
B(R%)), then

/Q h(X)dP = /Rd h(z)f(z)dz.

This gives us a way of interpreting [pq h(x) dF'(x) in the most common cases.

3) The integral [|, , h(z)dF () resembles a Riemann—Stieltjes integral with
integrand h : [a,b] — R and integrator F : [a,b] — R defined as the limit of
Riemann-Stieltjes sums

h(x)dF(x) := lim h(&)Aw o i F
» (z) dF () n_m; (&) A @iy
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ig=1 i1=1

£ B o o

xd,i.dfl xd-,id

where aj =250 <Tj1 << Tjp= bj, fjﬂ'j S [xj,ij_l,a:j,i].], V] = 1, .. .,d.

One can show (see ter Horst (1984)):

= |f h:[a,b] — R is Riemann-Stieltjes integrable wrt F' on [a, b], then h is
Lebesgue-Stieltjes integrable wrt Ap on [a,b] and [i, ,y hdAp = [i, 4 RdF.
This allows one to compute a Lebesgue—Stieltjes integral as a Riemann—
Stieltjes integrals if the latter exists, in particular to compute f[a’b] hdF as
Riemann integral if F' has density f.

= |f h:[a,b] — R is bounded, then h is Riemann—Stieltjes integrable wrt F
on [a, b] iff his continuous Ap-a.e. on [a, b].

= Example: h(z) = lg(z), = € [0,1], is discontinuous on [0, 1] (with
A([0,1]) =1 > 0), so h is not Riemann-integrable (also clear by definition).
But it is Lebesgue integrable with value 0 (by L. 5.11 6)).

= E(h(X))

4) A change of variables formula for transformations is [ h(z) dF'(x) =

2 L EY) = rydFy(y).

Y = h(X) ~ F
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Question: How can we compute multivariate (Lebesgue—Stieltjes) integrals?

Theorem 5.23 (Fubini—Tonelli)

Consider the product space (2, F,u) = (21 X Qo, F1 & Fo, 1 X p2) of the
o-finite measure spaces (€, F;, ui), i = 1,2; see E. 2.29. Let h: Q — R be
measurable wrt F; @ Fo. If h € Ly or h € L', then wy — fQ2 (w1, ws) dpg(ws)
is Fi-measurable, ws — fﬂl h(w1,ws) dpg (wy) is Fo-measurable and

o= [ ([ heon) duafeon) ) din 1)
= o, </Q1 h(wi,ws) d,ul(wl)> dpg(ws).

Proof. See Klenke (2008, T. 4.16). O

= |h| € Ly, so one applies Tonelli's theorem to calculate [pq |h(x)|dF(x) to
check whether [zq h(z) dF(z) exists. If [pa |h(z)|dF(z) < oo, then h € L}
and one applies Fubini's theorem to calculate [pq h(x) dF(x).

" According to the Fubini—Tonelli theorem, the order of the iterated integrals does

not matter, so changing the order of integration is allowed.
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An important application of the Fubini—Tonelli theorem is the following.

Proposition 5.24 (Expectation of products under independence)
If X1,...,X, € L' are independent, then E(X7 - ... Xg) = E(X7) - ... - E(Xy).

Proof. We first check that E(X - ... - X)) exists via
/ / 1] - .- |zgl AP (21) - .. - dFy(2)
H/ 23] dFy (@) = (X)) ... E(|Xa]) 5 o0
Since E(| X1 - ... Xq4|) <00, X1 ...  Xq € L' and Fubini now implies that
E(Xl'---‘Xd)T521/ J)ddF( )

Fubini / /331 'xddFl(xl) dFd(xd)
— Hl/ijdFj(xj) CE(X)) ... E(X,). O

lin.
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Another way of calculating expectations is the following.

Proposition 5.25 (Expectation via quantile or survival function)
Let X € L'(Q, F,P) and recall that F(z) = P(X > z) = 1 — F(x) is the survival
function of X ~ F. Then E(X) = fol Fl(w)du = [§° F(z)dz — [ix F(x)dz.

Proof. Quantile transform = X = F~1(U) for U ~ U(0,1) = E(X) = E(F~1(U))
= /01 F~1(u)du. The second equality can be seen geometrically as the graph of
F is the one of F'~! mirrored at y = x (this argument is much easier than an
analytic proof based on integration by parts for Stieltjes integrals):

Fu ||

o — > .

© Marius Hofert Section 5.2 | p. 208



5.3 Variance, covariance and correlation
Definition 5.26 (Variance, standard deviation, covariance, correlation)
Let (2, F,P) be a probability space and X,V € L?(Q, 7, P). Then

var(X) = E((X — E(X))?)
is the variance and sd(X) = y/var(X) the standard deviation of X (or its
distribution or df F'). The covariance of X,Y is

cov(X,Y) =E((X - E(X))(Y —E(Y)))

and the correlation of X,Y (or Pearson’s correlation coefficient) is
cov(X,Y)
var(X) var(Y)

p=-cor(X,Y)=

Lemma 5.27 (Basic properties)

1) var(X) = E(X?) - E(X)?

2) cov(X,Y) = E(XY) — E(X)E(Y)

3) cov(X, X) = var(X)
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) cov(Y,X) =cov(X,Y)

5) cov(X,c) =0VceR

6) var(X) =0 iff X = E(X)

7) var(aX +bY) = a?var(X) + 2abcov(X,Y) + b2 var(Y). Fora=b=1, we
see that var(X +Y) = var(X) + var(Y) + 2cov(X,Y). And for Y =1, we
see that var(aX +b) = a? var(X).

8) X,Y independent = cov(X,Y) =cor(X,Y) =0

Proof.

1) var(X) = E((X — E(X))?) "2 E(X? - 2XE(X) + E(X)?) = E(X?) —
2E(X ) (X) + (X)2 E(XQ) E(X)?.

2) cov(X,Y) = E((X —E(X))(Y —E(Y))) "S" E(XY - E(X)Y — XE(Y) +
E(X)E(Y)) = E(XY) — 2E(X)E(Y) + E(X)E(Y) = E(XY) — E(X)E(Y).

3) cov(X, X) :]E((X E(X))(X —E(X))) =E((X — E(X))? )—var(X)

4) covg o E((Y —E(Y))(X —E(X))) =E((X —E(X))(Y —E(Y))) =
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5) cov(X,c) = E(cX) — cE(X) = cE(X) — cE(X) =0, ce R,

6) var(X) = ;E((X —E(X))*) =0 g, (X —EX))? =206 X 2E(X).

7) var(aX +bY) = E(((aX +bY) — E(aX 4 bY)) ) = E(( (X —E(X)) +
b(Y — E(Y)))Q) = E(a’(X — E(X))?) + E(2ab(X — E(X))(Y —E(Y))) +
E(bZ(Y — E(Y))2) (:ﬁ a?var(X) + 2abcov(X,Y) + b var(Y).

8) E(XY) = E(X)E(Y) = cov(X,Y) =0 = cor(X,Y) = 0. O

From the last property, we see that independence implies uncorrelatedness. The
converse is false in general, take e.g. X ~ U(—1,1), Y = X? = cov(X,Y) =
E(X3) — E(X)E(XZ) = 0—-0=0, but X,Y are not independent.

Proposition 5.28 (Cauchy—Schwarz inequality (CSl))

If X,Y € L?(Q, F,P), then

1) [E(XY)| < (E(X?)E(Y?))Y/2 (CSI) with equality iff Y 2 mX.

2) p =cor(X,Y) € [-1,1] with p = £1 iff Y = mX + ¢ (with m = 0 iff
p = =+1).

© Marius Hofert Section 5.3 | p. 211



Proof.

1)

© Marius Hofert

Fort € R, let Z, = tX +Y. Then 0 < E(Z7) ™& {2E(X?) 4 2E(XY) +
E(Y?) =: at® + bt + ¢, a polynomial in ¢ with at most one root = 0 > b2 — dac
= 4(E(XY))? — 4E(X?)E(Y?) and thus [E(XY)| < (E(X?)E(Y?))/2. Fur-
thermore, we have equality iff b? —4ac =0 < 3t € R:at’> + bt +c=0 <
E(Z2) =0 g, Z 20V = —1X.

Applying the CSI to the centered rvs X := X —E(X), YV :=Y — E(Y) gives
lcov(X,Y)| = |E(XY)| < (E(X?)E(Y?)Y2 = (var(X)var(Y))"/2? with

def. def.

s . as — _leov(XY)|
equality iff Y = mX, so iff Y = mX + c. Therefore, |p| = var(X) var(Y) —
. B ) as . _ cov(X,mX+c) —
with p = £1 iff Y = mX + ¢. In this case, p = oty s B
—myvarX) _ _ m\which is 41 iff m = 0. L

m? var(X)?2 [m]
cor(X,Y) is only a measure of linear dependence (Y = X2 is non-linear). Also,
E(X?) < oo, E(Y?) < oo are required for cor(X,Y) to exist.
There are other measures of association between X, Y, e.g. Kendall's tau 7 =
P(Lir (x0)<F (X))} Lm(Xa)<Fa(x))})s SPearman’s tho ps = p(F1(X1), F2(X2)).

No summary statistic can characterize the dependence between X,Y (Sklar).
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Lemma 5.29 (Hoeffding’s lemma)

If (X1,X2) ~ F with margins Fj, F, and IE(XJQ) < oo, j € {1,2}, then
cov(X1, Xo) =[5, J20 (F (21, 22) — Fi(21) Fa(22)) drdas.

Proof. Let (X1, X)) be an iid-copy of (X1, X2). Then

2COV(X1,X2)
= E((X1 - E(X1))(X2 — E(X2))) + E((X] - E(X1))(X; - E(X3)))
mrEE(((0 - E(X) - (X - E(XD)) - (0 - E(X2)) — (V) — E(X3))))

= E((X1 — X1)(X2 — X3)).
With b —a = [ (1,<,; — ly-,y) do forall a,b € R, we obtain that

2 cov(X1, X2)
- E|:/ / <:[]-{X{£I]} B :H'{Xlgll})(ﬂ‘{‘\;gl_)} o ]]'{nglz}) d"l‘l (1‘/172:|
o / / E(...)dzy dag ™22 / / (z1,22) — Fi(21)Fa(22)) day dag. O
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Example 5.30 (Correlation fallacies)

1) Fallacy 1: Fi, F5, p uniquely determine F'. Consider X; ~ N(0, 1) and Xy =
(—1)Yw=121 X, for U ~ U(0,1) independent of X;. Then X, ~ N(0, 1) and
cor(X1, Xo) = cov(X1, Xa) = E(X1X2) = E((—1)"v=12)E(X}) = 0,
but also X1, X} = N(0,1) implies cor(X{, X}) = 0.

2) Fallacy 2: Given Fy, F; any p € [-1,1] is attainable. Let X, ~ LN(0,07),
j € {1,2}. By Hoeffding's lemma, 3 minimal p (p; for W; left) and maximal p
(p; for M; right); for 03 =1, 02 = 16, p € [~0.0003, 0.0137]!

SIS
OSSO0 0 %0 %0
030:%% 00

SRR
o

p(o1, )

(o, o)
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5.4 Multivariate notions

The following concepts generalize that of the mean and (co)variance to higher d.

Definition 5.31 (Mean vector, covariance matrix, correlation matrix, etc.)
If X1,...,Xq € L', then E(X) := (E(X1),...,E(Xy)) is the mean vec-
tor or expectation of X (or its df F). If Xq,..., X4, Y1,..., Yy € L2

then cov(X,Y) = (cov(X;,Y))) i=1,..a = E((X = E(X))(Y = E(Y))") is
1:1~7d/

the cross-covariance matrix of X = (Xi,...,X4) and Y = (Y1,...,Yy),

cov(X) := cov(X, X)) is the covariance matrix and cor(X ) = (cor(Xj, Xj)),‘f;j:l

the correlation matrix of X (or its df F).

Lemma 5.32 (Properties)

1) E(AX +b) = AE(X) + b. In particular, E(a' X) = a "E(X).

2) cov(AX +b,0Y +d) = Acov(X,Y)C". In particular, cov(AX + b) =
Acov(X)AT and var(a'X) =cov(a' X, a' X)=a' cov(X)a.

3) cov(X +Y) = cov(X) + cov(Y) + cov(X,Y) + cov(X,Y) .
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Proof. The given special cases follow immediately.

1) The jth component E(AX +b); of E(AX + b) satisfies

d
E(AX +b); = IE( Z a;k Xk + bj> = ajE(Xy) +bj = (AE(X) + b);.
k=1 k=1

2) The (¢, j)th component cov(AX +b,CY +d); ; of cov(AX +b,CY +d) is
cov(AX +b,CY +d);; = cov((AX + b);, (CY +d);)

d/

= COV(Z aip Xk + i, Zc]lYl + d; )
k=1

=1

B(X)) (écﬂm ~E)))

e (X~ E(X) (Y — B(Y)

&l
!
N
/—\ VN
End
Il S
-
S
&
k‘
=
|

d d
2N Y ancjicov(Xg, Vi) = (Acov(X,Y)CT),

def.
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3) The (4, j)th component cov(X +Y); ; of cov(X +Y) is
cov(X +Y);; =cov((X +Y);,( X +Y);) =cov(X; +Y;, X; +Yj)
5 E((Xi +Yi = E(Xi + Y))(X; +Y; — E(X; +Y))))
_ B((X; — EX; + Y; - EY)(X, — EX; + Y; — EY;))
" B((X; — EX)(X, — EX,)) + E((X; — EX,)(Y; — EY;))
+E((Y; - EY;)(X; — EX;)) + E((Y; — EY;)(Y; — EYj))
= (cov(X, X) + cov(X,Y) + cov(Y, X) + cov(Y,Y));
= (cov(X) + cov(Y) + cov(X,Y) + cov(X, Y)")ij O
The following corollary lists immediate consequences of L. 5.32.

Corollary 5.33 (Implied properties)
1) Fora = (1,...,1), we obtain from var(a' X) = a' cov(X)a that

d d d d
V&I‘(ZXj) =, Z Z cov(X;, Xjr) = Zvar(Xj) +2 Z cov(X;, Xjr).
j=1 o j=14=1 j=1 1<j<j'<d

If X;, X, are uncorrelated V j # j', then va,I'(Z;»]:l X;) = fo:l var(X;).
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2) Fora=(1/d,...,1/d) and uncorrelated X;, X;» Vj # j', we have
1 1 d 1<
var(d ZX]-) L d2var<ZXj> st Zvar(Xj).
7=1 7j=1 7=1
var(Xl).

If X1,...,Xg are id (= all variances equal), then var(% Z;i:l Xj) =4

= One can show that a symmetric, positive semi-definite matrix ¥ € R?*¢ allows

for the Cholesky decomposition
Y =AA",
where the Cholesky factor A € R?*? is a lower triangular matrix with nonnega-

tive (positive if X is positive definite) diagonal elements.

® The Cholesky factor A can be calculated row by row from ¥ = AAT via
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Based on the Cholesky decomposition, one can provide a characterization of
covariance matrices.

Proposition 5.34 (Characterization of covariance matrices)
A real, symmetric matrix X is a covariance matrix iff it is positive semi-definite.

Proof.

=": If ¥ is the covariance matrix of a random vector X, then a'Xa L)
var(a' X) > 0 Va € R? so covariance matrices ¥ are positive semi-
definite.

<" Let 3 € R¥4 be positive semi-definite with Cholesky factor A. Let X be
a random vector with cov(X) = I; = diag(1,...,1) (e.g. X; X N(0,1)).
Then cov(AX) = Acov(X)AT = AAT =3, i.e. ¥ is a covariance matrix
(namely that of AX). O

As a direct consequence, a real, symmetric matrix P is a correlation matrix iff it is
positive semi-definite and has 1s on its diagonal.
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Lemma 5.35 (Concentration on a subspace of dimension at most d — 1)
If X has cov(X) = ¥ and 3a € RN{0} : a"¥a = 0, then X;,..., X, are

linearly dependent a.s.

Proof. var(a'X) = cov(a'X,a' X) = ) a'Ya =0, so that, by L. 5.27 6),

L.5.322
a' X is constant a.s. Therefore, X, ..., X, are linearly dependent a.s. ]
Invertibility of covariance matrices (including correlation matrices) can be charac-
terized as follows.

Lemma 5.36 (Positive definite iff full rank)
¥ € R4 s positive definite iff rank(X) = d iff rank(A) = d.

Proof. We show the two equivalences separately.

1) ¥ € R¥4 js positive definite & 'Sz > 0Vz € R\{0} & Yz £A0Vx €
RN{0} < rank(X)=d — dim(ker(¥)) = d — dim({z : Sz = 0}) = d.

rank-nullity

2) We first show that AAT = 0 iff A = 0. “<" is clear. For “=", AAT =
(Xh—1 @i k)i =0 b= )y a?yk =0=a;; =0V4,j. Nowrank(A) -

d — dim(ker(A)) = d— dim(ker(AAT)) = rank(AAT)=rank(X). O

rank-nullity
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5.5 The Lebesgue—Radon—Nikodym theorem

Definition 5.37 (Absolutely continuous, equivalent, singular measures)

Let /1, v be measures on a measurable space (€2, F). Then

® pis absolutely continuous wrt i (notation: v < p) if v(A) =0VA e F:
u(A) =0;

" y, u are equivalent if v < p and p < v (share the same null sets); and

® y, 4 are singular wrt to each other (notation: v1p)if 3A€ F:v(A) =0 (v
lives on A°) and p(A€) =0 (p lives on A).

Lemma 5.38 (Sums of measures)
Let v,, n € N, be measures on a measurable space (2, F) and thus v := > > | v,
a measure. If v, < Vn €N, then v < . And if v, L Vn € N, then v_Lp.

Proof. For A € F : u(A) = 0, we have v(4) = > 72 vn(A) .=, 0. For
the second statement, v, Ly, n € N = 34, € F : v,(A4,) =0, M(AC)
0,ne N Let A=), A, €F. Then A° = Uy, A5 € F and O

De Morgan

v(A )gf_ > ome1 Vn(A )m% Y ome1 Vn(Ap) =, Oand0 < ,u(AC) < Z ° 1 ,U(AC)

d

<
0.
"B
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For the following result, we need the notion of signed measures. A signed measure
on (£, F) is a function which satisfies

i) p:F — [—o0,00] and p attains at most one of to0;
i) u(®) =0;and
iii) p is o-additive.

Lemma 5.39 (Relationship between finite measures)

If 11, v are finite measures on (€2, F), then either v L por 9 > 0, A € F : pu(A) > 0,

vlia > epla.

Proof. Vn € N, Hahn's decomposition theorem (see Folland (1999, T. 3.3))

applied to the signed measure v — %u implies that 44, € F : v — %/,1,“471 >0 and

v — %/1,|A45, < 0. Consider Ay, := ;21 A € F. Then
0.5 via%) Z v S ) < Sp(@), meN.

v meas. Agc_g AS, def. T A Qan

= v(AS) = 0. If p(Ax) = 0, then vlp. And if pi(As) > 0, 3n € N :
w(Ay,) > 0 for some n and |4, > %/1,|‘4n, so choose A:= A, ande:=1/n. O
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Theorem 5.40 (Lebesgue—Radon—Nikodym theorem (LRN))
Let 1, v be o-finite measures on a measurable space (2, F).
i) Lebesgue decomposition: 3! o-finite measures 1/,. 7. on (€2, F) such that

V=1Vg+ Vs, Vg<<U, Vslp.
ii) Radon—Nikodym theorem: 3 a p-a.e. unique integrable [ : {2 — [0, 00) :
Ve (A) = / fdu, VYAEeLF,
JA

so v, has density f wrt u (notation: dv, = fdu).

Proof. We prove both statements together, distinguishing two cases.

Case 1) () < oo and v(Q)) < oc.

1) Maximum of densities. Consider
A= {g : Q0 — [0,00] : g is p-integrable, / gdu <v(A)VAe ]:}.
JA

Then 0 € A, so A # (). And ifgl,gg € A, let B:={g1 < g2} and
note that [, max{gi, ga}dp "2° [\ pgadu+ [ynpegrdp <

tot meas. 91,92 € A
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v(ANB) +v(ANB°) : = p(A), so max{g;, g2} € A. By induction,
also max{gy,...,gn} € .A for any number n € N of such functions.
2) Existence of the density f. Let S := sup c 41 /o 9 d/l} < I/(Q) < 00.

o F{gntnen €A Jqn dp — S Let f, == max{ql ..... q,L} S
Aand [ :=sup,cn 90 = fn /‘ f pointwise % fis mtegrable
and [, fdp = lim, o g fn dp. Furthermore:
fn € AVn = fAfnd,udegA v(A)Vn= [, fdu= [ofladu =
limy, o0 [ frladp =lim, o0 [4 fndp <v(A), so [ e A
® Since fod,u choose im0 Jo fndp n> limp, 00 o gndp =

def. g,

S and fod,u:hmn_m)fondu < S/so [, fdu=25.

f fondy < SVn
fn €A
= Since f is integrable, f | S, 00 a.e., so we may take f to be

real-valued everywhere (redeflne as 0 whenever o).
3) Existence of v, vs. Define

Va(A) i= /A [dj¥ A € F and vi(A) = v(A) — ra(4) > 0.

= 1, < . Suppose vs £y = 3e >0 Ae F:pA)=>0,

L.5.116)
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VA > epla = VB EF, [peladu=ep(ANB) < u(An

cula S vela

B) < u(B) = v(B) — fpfdu % [y(f + cLa)dp < v(B) =
frelae Aand [o(f +ela)du=S+eu(A) > S ¢ = v lpu

4) Uniqueness of vg, f,vs. If v = v+ for dv), = f'dp, then vy —v) =

Vo — Va, S0 that 1hs(B) := v4(B) —v,(B) = [g(f' — f) du =: ths(B)

VB e F. If u(B) > 0, then lhs(B) ::i: 0, and if u(B) = 0, then

ths(B) =, 0= Ihs(B) = ths(B) = 0¥ B € F =7

pra.e. = v, =V, = UV, = Us.

P.5.141) = 3)

Case 2) p and v o-finite.

" By assumption, 3{Aymtmen € F @ AuiN Au; = 0 Vi # j,
o1 Apm = Q (wlog a partition), p(Aum) < oo and similiarly
{Avi}ien for v, Then Q = QN Q = (Wi Apm) N(WE Au) L=
W1 WiZ1(AumNA,,). By relabeling, A, := A, ,»NA,; (Cantor'é
first diagonal argument), 3{A,},eny € F : A, NA; = 0 Vi # j,
ot An =, u(A4,) < oo and v(A,) < oo, n € N.

= Define the finite measures 1, (B) := u(BNA,), v,(B) :=v(BNA,)
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VB e F. Case 1) applied to i, v, implies that Vn € N,
VTL(B) — ]/TL,(L(B) + Vn,s(B) - / fn d,“/n + V'rL,H(B) VBeF (*)
JB

for vy, a4, fn,vn s as in Case 1), in particular, vy, q, vy s are finite.
= Since pn(AS) i 0 and v, (AS) . 0, we have v, s(AS ) = yn(AC)

fA% Jn dpin Ls11o)

® let v, (B):= [ fdufor f:=3 " f, (f is integrable by L. 5.8 3))
and let v, == > " 1, . By L. 5.38 and Case 1), v, Lp. And v, g
are o-finite since v, 4,y s are concentrated and finite on A4,, and
{An}nen partitions €.

0. We may thus assume that ;|1 = ().

0o 0o 00
" uB) = V<Bm o An) = ,,( u (BﬂAn)> — S u(BNA)
partition o n:1 Z Istr. n:1 o-al . n:1
defom Z VN(B) a Z (/ fn d,un + Vn,s(B)>
n= 1 n=1 B

Mn\An H‘An onelliorC. 5.1
(o) I [ s
o n=1\’B S JB

= 1/(,(B)+I/S(B), BeF.
= Uniqueness follows as in Case 1). O]
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® The converse is trivial: If u,v are o-finite measures and 3 an integrable f :
Q2 —[0,00) : dv = f du, then VK

® Because of the expressions v(A) = [, fdu or dv = fdpu, the a.e. unique
density f is also denoted

dv
du
and called Radon—Nikodym derivative of v wrt p.

Corollary 5.41 (Radon—Nikodym theorem (RN); v, =0 in T. 5.40 i))

If 1, v are o-finite measures on a measurable space (2, F) such that v < 1, then
3 a p-a.e. unique integrable f: Q — [0,00) (f = 3—;) such that

V(A) = / fdu, VAeF.
A

The following result shows that formulas suggested by the notation S—Z are often
correct.
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Proposition 5.42 (Formulas involving Radon—Nikodym derivatives)
Let p, v, A be o-finite measures on (€2, F) such that v < p, u < \.

1) If g € LY(Q, F,v) then g§% € L'(Q, F, u) and [ gdv = [o g% dp.

2) v< Aand & = gzg‘; A-a.e.

Proof.

1) We show both statements by applying the standard argument: First, () holds
for g =14, A € F, since

dv dv dv
v _ _
/diyfﬂE(IlA) = v(A) = ) @du;ﬂ A ﬂA@d = /di,u dp.

By linearity of the integral, () also holds for all simple functions. By MON, it
holds for all g € L. Again by linearity, it holds for all g € L'(2, F,v).

2) /\(A):O = WA) =0 = v(A) =0, s0v <A Applying (+) to v < 4,

v

A, g<—]lA , We obtain

dv dv dv du
—d)\"<<A A) =" —du = —d /Il d)\
d/\ (d) RN1 d/‘ 'udef 'u AT ,u
v dp
d\ VA
Ad,u d\ €7

and so the claim follows by P. 5.14 1) = 3). O
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Remark 5.43
1) If the distribution I of v in the RN theorem is absolutely continuous wrt
Lebesgue measure A (u in the RN theorem), then F(13) = Jp fdA VB €

B(RY), so the RN derivative f is the density of F; in differential form: d /" —
FdA.

2) For B = (—oo, ], we obtain /'(x) = F((—00,x]) = [_ooq[dX =
(oo o [(2) diz; in differential form: /() = [(x) dx. Hence [g g(a) dF'(x)
= ng( )f(x) d.

3) We recognize from P. 5.42 1) the measure change E,(g) = Eu(gg—;) if v < p.

This is applied in importance sampling in statistics. If X ~ f and X ~ h, then

_ @@, e (OAR)
Ero(X)) 5 [ s@f@de = [ ST de = B (75005
)

where (k%) holds for all densities i such that i(x) = 0 implies f(x) = (
f(x) >0 = h(x) >0, ie supp(f) C supp(h)); note that for h(x) =

interpret g(x)(fgx) h(z)=3-0as 0.
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6 Modes of convergence

6.1 Almost sure convergence and in probability
6.2 Convergence in LP

6.3 Convergence in distribution

6.4 Uniform integrability

6.5 Slutsky's theorem

6.6 Counterexamples

6.7 Relationships between modes of convergence
6.8 Convergence of quantile functions

6.9 Strong law of large numbers
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6.1 Almost sure convergence and in probability

Definition 6.1 (Complete convergence, almost sure and in probability)
Let (©2, F,P) be a probability space and X, (X, )nen : © — RY, d > 1, be
random vectors.

1) (Xn)nen converges completely (c.c.) to X (notation: X, =5 X)ifVe >0,
o0
> P(| Xy — X|| > €) < oo
n=1
2) (Xn)nen converges to X almost surely (a.s.) (notation: X,, = X)) if
P(lim X, =X)=1.
n—oo

3) (Xn)nen converges to X in probability (ip.) (notation: X, - X)if
Ve >0,

lim P(| X, — X|| >¢) =0.
n—oo
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Lemma 6.2 (Auxiliary results for characterization of a.s. convergence)

Let ¢ > 0.

1) Let n € N. Then sup,,{|[ X — X|[| > ¢} = {sup, ., [| X — X|| > €}. And
lim supys,, {[| X5, — X || > e} = {limsupys, | X5, — X[ > ).

2) linlnﬁxIP’(supkzn{HXA; — X|| > ¢}) = P(limsup,,_, . {|| X — X|| > €}).

Proof.

1) w € supps, {| X — X[ > ¢} = Ursn | Xe — X|| > e} iff 3k > n -
| X1 (w) — X (w)|| > € iff supys,, || Xi(w) — X (w)|| > € (note that the former
sup is the set-theoretic one, the latter is the analytic one). Similarly for lim sup.

2) Ane = suppsp {1 Xk = X[ > e} 2 Upon{l| X = X[ > e} \o= Ane N\

def.
net Ane = limsup, ,  {[|Xn — X|[| > e} =1 Ao e = limy 00 P(4y) =
P(Aoce). O

cont.
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Theorem 6.3 (Characterization of a.s. convergence by i.p.)
X, :> X iff supys,[|[ Xk — X|| 5 0

Proof.

‘=" IN e F:P(N)=0and X,(w) — X(w)VweN Lete>0. =
Vw e N¢ dm € N | X,(w) — X(w)|| < e Vn > m. Let A, :=
Uksn | Xk — X|| > e} and Ao e := 2 Ane. ThenVw € N°3n € N:
W Ape=>w ¢ Ao, 50 Ao © N. Thus lim,, o P(|supy>,, || X — X||
0] > 2) = limp 00 P(sUpg>, [| X — X || > €) LT limy, 00 P(sUpgs, { | Xk
- X|| >¢e}) = IP’(hmsupn_mo{HXk X >e}) def P(Ax:) <P(N)=0.

L.6.22) lmsu

‘=" P(lim X, # X)) ( lim HX - X 7é 0) = P(lim sup|| X,, — X || > 0)
7 n— o0

o0 1
=P 1 X,—X < P <l X,—X —
(U{lmsupn 1> 1) Z ({1 supl 2, - x> )

o-subadd
m=1
00

1 . 1
=2 P {1 X1 1) =, 5t e ({1, x> 1)
m=1 =
o
= Z 0=0. ]
“m=1

m
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Several important special cases appear from T. 6.3.

Corollary 6.4 (Complete convergence implies a.s.)

X, —> X:>Xnn§mX.

Proof. 5°°  P(|| X, — X|| > &) < 00 = limy 00 P(SUpg, | Xk — X || > €)
limp 00 P(supy>, {[| Xk — X|| > €}) | =, P(limsup,, . {[|Xn — X > €}) =

L.6.22)

L.6.2 1)

= V.

T.6.3
Corollary 6.5 (A.s. convergence implies i.p.)
X, 3 X=X, —> X.

n — oo

Proof. X;, = X = supps,[ Xk — X[ 5 0= [X, - X[ & 0=

T.6.3

X, n:”>oo X. O

Corollary 6.6 (A.s. monotone and convergence i.p. implies a.s.)
X, j"> X and (X,)nen a.s. monotone = X, j> X.

Proof. X, = X = [ X, — X| = 0. Therefore, sup;>,[| Xy — X|| =
[Xn— X[ & 0= X, = X.

T.6.3
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Theorem 6.7 (Subsequence principle)
Xn jp> X Iff V(Xnk)keNg(Xn)neN E| (Xnkl)IENg(Xnk)keN . Xn,k,] c[c1>as X

n oo — oo

Proof.
Y= Xn "—p> X = Xnk kf)m X V(Xnk>k€N C (Xn>n€N = H(nkl)leN -

— oo def.

(ni)ken : P([| Xy, — X|[| > 1/1) <271 V1. Thus, Ye > 0,
Y P([ X, — X[ >¢)
=1

= 3 P(|Xuy, — X[ > )+ Y B(|Xn, - X[ >) <oc.

leN: leN:
1/l>¢ <1 1/1<e S]P’(HXnkl—XH>1/l)§2—l

< [1/e] - 1 (finite) 00 ol _
< Zl:l 27=1
ﬁ Xnkl njoo X (:.?4 Xnkl n?oc X

<" Suppose X, = X = ey > 0, &2 > 0,(Xp)ken C© (Xn)nen
P(|| Xy, — X || > 1) > €2 Vk=3 (Xnkl)leN C (Xnken : Xy, "7 X

k15’

Xy, =+ X £ to (). O

=
€.64,C.65 11—
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Lemma (Equivalent condition for convergence)
an = aiff V(an, )ken C (an)nen, 3 (any, )ien C (any)ken : any, = a.

Proof. “=": v'. "<": Suppose a,, =¥ a = Fe >0 and (an,)ren C (@n)nen :
|an, —a| >¢e VEkeN. But by ass., 3 (ankl)leN C (an, )ken : Uny, | 57 @ / O

The subsequence principle allows us to extend DOM on probability spaces from

almost sure convergence to convergence in probability.

Corollary 6.8 (DOM for convergence i.p.)

If X, % X, |X,| <Y VneNforY e L' then (X,) C L', X € L' and

limy, 00 E(X,,) = E(X).

Proof.

" X D X CE Y (X ken € (Xn)nen, 3 (X, )ien © (X ke : Xy, 75
X = (Xp) C L', X € L' and lim;_, o E(X,, ) = E(X).

" We have thus shown that V (E(Xp, ))ken € (E(Xn))nen, 3 (E(Xn, ))ien C
(E(Xn,))ken @ E(Xn,) - E(X). By the above lemma, we thus have

E(X,) —_ E(X). O
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Theorem 6.9 (Continuous Mapping Theorem (CMT) for a.s., i.p.)
Let X, (X,)nen be random vectors and h : R? — R¥ be continuous. Then
1) X, = X implies h(X,) = h(X); and

2) X,, = X implies h(X,) = h(X).

]

Proof.

1) Vw € Q: limy, 00 Xy (w) = X (w), we have lim,, o0 (X, (w)) = h(X(w)).
Hence

{weQ: Jim X, (w)=Xw)} C{we: Jim h(X,(w)

SO

I
=
o
£
-

P(lim h(X,) = h(X))

n—oo def.

P({w e Q: lim h(X,(w)) = h(X(w))})
P({we: Jim Xp(w)=X(w)})
= P(lim X, = X) =1

def. ass.
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2) Advanced: By the subsequence principle, V (X, )ken € (Xn)nen, 3 (Xn,, )ien
g (Xnk)k.eN . Xnkl l§m X ?)> h(Xnkl) lj_;s.)oo h(X) subsequence principle \/

appliedto (h(Xpn))nen
Elementary: Fixe > 0. V6 >0, let Es:={x ¢ R : Jy e R?: ||z —y|| <
5, |h(x) — h(y)| > e}. By continuity of h, lims_,o Es = (). Also, V31 < 82,
Es, C Ej,. Therefore, lim; .o P(X © F;) = P(X € ) =0, so

above

P([h(Xn) — R(X)|| > €) = P(|h(X,) — h(X)]| > &, | X, — X[ < 0)

prob.
+P(|h(Xn) — A(X)]| > ¢, [ X, — X[ = 9)
< P(X € By) + P(| X, — X|| = 0).

0 for any fixed 6 > 0

n — oo

Therefore,

Jim P([R(Xn) = R(X)| > ) < FOX € 1) 53, 0 -

— 0+
Similarly as in 1), involving a null set of discontinuities of h, one can easily see
that the CMT extends to almost surely continuous h.

© Marius Hofert Section 6.1 | p. 239



6.2 Convergence in L7

The following result often provides useful bounds on tail probabilities.

Lemma 6.10 (Tail probability bounds)
Let h:[0,00) — [0,00), T and X be a rv. Then

E(r(X1))

B(X| > 2) < =5 o,

x> 0.

Proof. For all z > 0, we have

P(X] > =) = P(h(|X]) > h(2)) = E(Lin(x))2h()})

< E(h(!X\) ﬂ{h(|x)2h(x)}> < E(h(!X!)) _ E((XD).

rron. h(zx) h(z) ) ™  h(x)
——
>1if 1ga=1 OJ
® For h(z) =z, P(|X| >2) < w is known as Markov's inequality.

» For h(z) =22, P(|X]| > z) < E(X) is known as Chebyshev's inequality.

2

© Marius Hofert Section 6.2 | p. 240



Definition 6.11 (Convergence in LP)

Let (2, F,P) be a probability space and X, (X )nen € LP, p € [1,00], be rvs.
Then (X,,)nen converges to X in LP (or in the pth mean) (notation: X, Lf) X)
if

nlgroloHXn —X|[p=0

a n — = n — p 0 y co &= =
(recall: || Xy, — X ||, = E(|Xn — X[P)Y/?, p € [1,00) and || X |0 := esssup | X]| :
inf{x > 0: P(|X| > z) = 0}).

Although some results also hold for p € (0, 1), this case is often excluded as [|-||,
does not define a norm anymore since the triangle inequality fails for p € (0, 1).

Lemma 6.12 (Higher order convergence in mean implies lower order)
Ll L?

V1§p<q§oo,Xnnj>mX:>Xnn:>mX.

Proof. || X, — X[, < Xy — Xg-17 4 =0, O

5.19
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Convergence in LP is often used to show convergence i.p.

Lemma 6.13 (Convergence in mean implies i.p.)
Vpel,oo], Xp & X = X, & X,

Proof.

pE[l,OO)SVE>O,]P(’Xn—X‘>5) < E(Xa=XPP) .,

P = o0:

L7510 epP n — oo

Ve>03n. e N: || X;, — X|loo <& Vn>n.. Since | X, X]df”H
| X, — X||oo (the rhs is that level which the lhs only exceeds with
probability 0), we also have | X,, — X| < 1 X0 — Xlloo < € Vn > ng,

so P(|1 X, — X|>¢) <P(| X, — X|loo >¢) =0Vn > ne.. O

Proposition 6.14 (Convergence of pth moment)

Vpe(l,oo, Xn 5 X = | Xall, —

Proof.

imply |”Xan — || X

o ||X||p
HXan - HX - X +X”p ||Xn XH/) + HXHP

HX‘ p= ||X - Xn + Xn”p < HXu - XH[) + HXan

Minkowski

pl < 1 Xn = Xllp = 0. L
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6.3 Convergence in distribution

Definition 6.15 (Convergence in distribution)

Let (€2, F,P) be a probability space and X, (X, )nen : Q2 — R%, d > 1, be random
vectors with X,, ~ F,,, n € N, X ~ F. Then (X,,),en converges to a random
vector X in distribution (or weakly) (notation: X, n:d>oo X or F, n:d>oo F) if
lim,, o0 Fpy(x) = F(x) Va € O(F) := {& € R?: F is continuous at x}.

Recall that C'(/)¢ (discontinuity points) is countable, so a Lebesgue null set.
Uniqueness of limiting distributions. Let lim,, o, F,,(z) = F(x)Vx € C(F)
and lim,, o Fp(x) = F(x) V& € C(F). Then F(x) = lim, oo Fn(x) =
F(x)Va € C(F)NC(F) = (C(F)°UC(F)%)¢ =: N° so that F = F except
possibly on the Lebesgue null set V. But for & € N, right-continuity of F, I’
implies that F(x) = limz—z+ F(2) "= lims sy, F(2) = F(x), so F = F
on RA. zeN°¢ oni zeN°¢

Example: Let X ~ F for continuous F, not symmetric about 0. Then
X, =(-1)"X ~ F, for F(x) = P(X < x) = F(x) for even n and
Fp(z) =P(X > —z) = F(—x) # F(z) for odd n, so X, = X.

n — oo
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®  Convergence in distribution is a weaker form of convergence than a.s., i.p. or in
pth mean, the X,;'s do not even have to be defined on the same prob. space.

The following result provides an important characterization of convergence in
distribution; see van der Vaart (2000, pp. L. 2.2) for more equivalences.

Theorem 6.16 (Portmanteau theorem)
X, > X iff JH%OEUL(X”)) = E(h(X)) ¥ bounded and cont. h : R — R.

n — oo

Proof. Let X,, ~ F,,, X ~ F.

“=": 1) Let h be continuous and |h(x)| < M, x € R%.
2) By R. 4.24 4) (= F only jumps where its margins jump) and R. 3.16 3)

(V7, Fj has at most countably many jumps), the set of discontinuities of

F is of the form D = H;l:l D;, where Dj is the (at most countable) set

of discontinuities of F};, a Lebesgue null set. Since A,y " — 1 for a —

—oo and b — oo, we find for any £ > 0, a,b € D : A,y F' = 1 — 573

note that Ay, /" = Ay F as a is a continuity point of F. For

I := |a, b, we thus have P(X € ) = 1 — A,y
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3) h cont. on the compact I = h uniformly continuous on I, so 3m € N
and a partition I = [y, I for rectangles I}, with endpoints in D¢
such that sup, ¢, [M(x) — h(y)| < . For k=1,...,m, pick x € Iy
and define the piecewise constant /.(x) := > )" h(x) )1 (). Then
|h(x) — h(z)| < g VT €l

4 E(A(X) — E(h=(X))| = [E(A(X) — he(X))| < E(JA(X) — he(X)))
=E(|h(X) — he(X)[1;(X)) + E(|h(X) = he(X)[11-(X))

<E(C1,(3)) +E(A(X) ~ 0]17(X)) < £ -1+ ME(X € ) <
3) 6 <3 PX el

Wl m

£

< £
5 6M

5) Recall that P(X,, € I¢) "™ p(X ¢ [°) < gaz- For all n suffi-
ass. 2

ciently large such that P(X,, € ) < 35;, we thus obtain similarly as
in 4) that [E(h(X,,)) — E(h-(X,,))| < g+ MP(X, € [°) < g+5=3.

6) For all n sufficiently large, we thus have

lin.

S h(@n) (B € L) — P(X € I,)
k=1
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% i ’h(:l:k)HP(Xn S Ik)—P(X S Ik)’ S (;

nlarge O

k=1 endpointsof I, in D€
— 0

ass.

7) For n sufficiently large, we thus have
E(h(X,)) — E(h(X))
= [E(h(Xn)) = E(he(Xn)) + E(he(Xpn)) — E(he (X)) + E(he (X)) — E(h(X))]
< [E(A(Xn)) = E(he (Xn))| + [E(he(Xn)) ~E(he (X))] + [E(he (X)) —E(h(X))]
o zTots™
“<":i) Letx € C(F). For € > 0, consider the multilinear function h.(z) =

[T}, max{ mm{xzzj ,1},0}, z € RY, which satisfies
]l(—oo,wfs](z) < hs(z) < ]l(—oo,w} (Z), FAS Rd~
Therefore, F'(z — ¢) = E(1(_oo z—e] (X)) < E(he(X)) and E(he (X)) <
E(1(—00,2)(X7)) = F(x). This implies that
lim inf F.(x)> linrr_1>i£fE(h€(Xn)) = lim E(he(Xn)) = E(he(X)) > F(z — €).
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Hence F'(x) = limey0 F(x —€) < liminf,, . F,(x).
ii) Similarly, the multilinear function he(z) = H;l:l max{min{%, 1},0},
J
z € RY, satisfies
]l( °°$]( ) (Z) < ]1(—oo,:c+s](z)a FAS R%.

Therefore, () = E(1(—o0,4)(Xn)) < E(he(X,)) and E(he(X)) <
E(1(—oo,z+¢) (X)) = F(x + ¢). This implies that
<

limsup F,(z) < limsupE(hs(X,,)) = 1i_>rn E(he(Xy)) = E(he(X))
n—o00 n—00 ass. N—»00 ass.
< F(x +e¢).

Folx) <lime,oF(x+e) = Flx).

right-cont.

Hence lim sup

n— o0

We thus obtain that

F(x) S) hnrglcngn(:c) <limsup Fy,(z) < F(x).

n—o00 ii)
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Corollary 6.17 (Convergence i.p. implies in distribution)
X, 5 X=X, 5 X.

n — oo n — oo

Proof.

Advanced:

= We verify the ass. of C. 6.8 (DOM). Let h : R? — R be continuous and
|h| < M < 0.
i) h continuous =- h is measurable = h(X,,) is measurable Vn € N, and

P.3.7 P.3.6
X, & X = h(X,) = h(X).
i) (X <M neN
iii) The constant function )/ is integrable.

= By C. 6.8, (h(X,)) C L', h(X) € L' and limy_oo E(h(X,)) = E(h(X))
Elementary: Let X, ~ F,,, X ~F, x € C(F), e >0,e = (e,...,¢).
i) Fu(x )t°t P(X, <=, <) +PX, <z || X, X[ >¢)

<SPX <z+e)+P(|X,—X| >e)=F(x+e)+P(|X,—X]|| >¢),

hence lim sup,, .., Fn(x) < F(x + €).
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i) And
F(x—e¢) ;%P(X <z-—c¢, |X,-X||<e)+P(X <z—¢, [|[X,-X| >¢)
<P(X, < @)+ P(|X,— X > 2) = Fol@) + P(| X0— X > ),
hence F(x — &) < liminf,, . F,(x).
We thus obtain that
Fx—e¢) < hmmfF (x) < limsup F,(x) §) F(x +¢).

i) = n—o0

Now let £ — 0+ to see that lim,, o Fp(x) = F(x). O

Corollary 6.18 (Convergence in distribution to a constant implies i.p.)
X, %> ceRd:>Xn,§ c.

Proof.
= For r € (0,1], M Z (inﬂ) > 4 Ixal -1
(Z] 1|95J| Zk:l |7k I= Zk 1 2kl
so (Z?Zl |z])" § :1 |zj|". Therefore, for 1 < p < ¢ < o0, |z||; =
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()

Chilegnw < (Sl
lar, [|-[}2 < [[-[]1.

" Note that the df of the degenerate random vector c is F(x) = 1|¢o0)() with
C(F) =R\N{z : 3j :2; =c¢j, op > ¢, Yk # j}. Letn € N, ¢ > 0,
e=(g...,e) and c € R%.

= Since {w:max;{[ X)) 5} € {w: [Xalw) —ch <) €
{w | X, (w) — ¢l <&} we have

p 1 1 )
fa)p = (Z;l:l |z;|P)? = ||a||,. In particu-

P(IX el >€) = 1 = (X, — ¢ <) < 1= Pmax{| Xy — ) < 5)
J

£ ..
:1—]P<|Xn,j—6j‘ S de) :l—A[c
As all endpoints of [c - 5,c+ %] are in C(F), we get

lim P(|| X, —c||>¢)=1—-A

£ =>4
n—00 [C*E,C“I’E

zero 6 6
]Fothfwisel_F<cl+d"”’cd—'_d>

=1-1=0. O
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Example 6.19 (Convergence i.p. to a constant # a.s.)

Consider independent (X,)nen with P(X,, =0)=1—-1/n, P(X, =n) = 1/n.
" P(|X,-0|>¢)=P(X,=n)=1

n

" But )%, P(|X, — 0] >¢) =32, =00 = P(X,, =nio) = 1. Therefore,

— 0,50 X, = 0.
n — oo n — oo

n=1n BC2
P(lim X, =0) = P(X,=0abfm)=1-P(X,=nio)=1-1=0,
so X, =00.

n — oo

Theorem 6.20 (Continuous Mapping Theorem (CMT) for conv. in d.)
Let X, (X, )nen be random vectors and h : RY — RF be continuous. Then
X, :d> X implies h(X},) _% h(X).

Proof. For all bounded and continuous ¢ : R¥ — R, the composition goh : R? —
R is also bounded and continuous "™~ " E(g(h(X,))) — E(g(h(X)))

g o happliedto (X, )n

portmanteay “<=" with h(Xn) n%oo h(X) D

gappliedto (h(X 1)) n
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6.4 Uniform integrability

Under a.s. convergence or convergence i.p., mass can escape to oo such that
there is no convergence in mean (see later). Combined with uniform integrability,
this can be avoided and one can obtain convergence in mean.

Definition 6.21 (Uniform integrability)
(Xi)ier © Lt is uniformly integrable (u.i.) if sup;e; E(|Xi|1qx;/>a}) — 0.

a — oo

Example 6.22 (Uniform integrability)

1) If X € L', then |X|1{x|>q .= 0 a.e. (everywhere where X is finite,
which is a.e. by L. 5.13), |X|Ijx|5qy < |X| Va > 0 and [X| € L' =
limg o0 E(|X |1{|x|5q}) = 0, s0 a single X € L' is u.i.

Ix:l < v
2) If ’Xz| <Y e L'Vie I, then SUp;er E(|Xi’]l{|Xi|>a}) < SUpP;er E(Y]l{y>a})
Lx;1>ay < L{y>a}
2 0, so a sequence dominated by the same Y € L is u.i.

a — oo

3) Finitely many (X;)" , C L' are u.i. by 2) with | X;| <", |X;| € L' V3.
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Theorem 6.23 (Characterization of u.i.)

(X:)ier € LY is u.i. iff

i) sup,c; E(|X;]) < oo (uniform bounded first absolute moments); and

i) Ve > 03 > 0 : sup;c; E(|Xi|1a) < e VA € F : P(A) < 6 (uniform
absolute continuity).

Proof.
“=" For any i € [ and a € (0,00), we have E(|X;|14) = E(|Xi|]]-Aﬂ{|Xi|§a}> +
()
E(|1XilLan{x;>a}) < aP(A)+E(|X;[ 1 x,>a}), 50 that sup;c E([X;|14) <
alP(A) 4 sup, o BTy 520y ). With A =€, we get i). To get ii) for e >
0, apply L. 5.13 to choose a sufficiently large so that sup, ., E(1.X; |1 v o0y )
< 5 andletd := /2 Then for P(A) < 4, sup;c; E(| X;|14) < afa2 +5=e.

a °

‘<" Byii) with A = {|X;| > a}, wehavethat Ve > 036 > 0 : E(|X;| 1y x,5q)) <
e Vi:P(|IX;| > a) < . Since sup;c; P(|X;| > a) < 2eerBUND . e o

Markov a i)
oo choose a sufficiently large such that P(|X;| > a) < 6 Vi € I. Therefore,
E(‘Xi’]l{|Xi|>a}) <eViel, sothat SUup;cr E(‘Xi’]l{|Xi|>a}) <e. ]
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Lemma 6.24 (Probability of integration domain going to 0)
If X € L' and (Ap)nen € F : P(A,) — 0, then lim, 00 E(X14,) = 0.

Proof. Let ¢ > 0. By E. 6.22 1) Ja > 0 : E(|X|1{x|>q}) < €/2. And by
assumption, In. € N: P(A,) < 5= Vn > n.. Then

E(XLa,)] < BIX[La,) 5 B(X] L, xvieor) +EOX Ligoxio0)
<a

< aP(An) + E(IX|Lyxpa) < 5 + 5 =< O

Theorem 6.25 (Convergence i.p. and u.i. imply in LP)
Let X, (Xn)nen be rvs. If Xi, = X and (| Xp[P)nen is u.i. for some p € [1, 00),

then X, i—‘é X.

Proof.
1) Xn 5 X "2V (X ken C© (Xn)nen 3 (X Jien € (Xngken : Xny, 23 X

principle

So E(|X|P) = E(lim inf; o0 [ Xp,, [7) = lm infy 00 E(| X, [P) < suppey E(

| X5 |P) 1Sy and therefore X € L.
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2) For a,b € R and p > 0, |a + bP % (la| + [6))P < (2max{]al, |b[})P =
2P max{|a|?, |b|P} < 2P(|a|P + |bP). Therefore, | X,, — X|P < 2P(|X,,|P + | X|P).
3) Let e > 0. Then
Xy = X)) =E(|Xn — XIP Lx, —x|<e}) TE(|Xn — XPP1gx,—x|5e))
—_—— —
<ep S 27 (| X |[P4| X |P)

< el 1+ 2PR(|X, [Py, X‘>¢})—|—2”E(\X|T’]1{‘X”_X‘X}).

lin.

E(

4) X S LP = 3In. e Nt E(|XPL{x, x|5c)) <€ Vn = ne.
5) Byass., (| Xi|P)ienisu.i. = Fore > 0asabove, 36 > 0 : sup;cy E(|X;[P14) <

eVn : P(A) < 0. SlnceX & X, 3dn. € N:P(|X, — X[ >¢) <6
Vn > f.. For such n, we can “take A = {IX;, — X| > €} and obtain that

E(Xn[P1y1x, —x)e)) < supsen B(1XePLx, - x|>e}) <& V= 7.
6) Therefore, V1 > max{n.,n.}, we have

E(|X, — X

Py < el 2P  2Pe, O
3),4),5)
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6.5 Slutsky’s theorem

d

According to the CMT, if (X,,,Y,,) — (X, Y) (joint convergence in distribution),
then h(X,,Y,) % h(X,Y) V continuous h, in particular, if of the same

d

dimension, we would also have that X,, + Y, - X+Y.

Question: If X, n%@ X and Y, :d>oc Y (individual convergence in distribution),
does (X, Y,) = (X,Y) hold?

n

In general no, as there is no guarantee that the dependence structure of (X,,,Y,)
converges to that of (X,Y); see also the following example.

Example 6.26 (Convergence in distribution not robust under summation)
Let X ~ F' with ' symmetric about 0 (e.g. ®), P(X = 0) € [0,1) so that
F(x) # Ty (). Then X = —X. If X,, % X, then also X, = —X, but

— 0o

Xo+ Xn =2Xy 5 F(2/2) # g o0)(2) ~ X + (=X).

n oo

However, it holds if X,,,Y,, and X .Y are independent (with characteristic func-
tions later: ¢x,+v,(t) = ¢x,(t)oy, (1) = ox(t)ov(t) = dx1v(t) = V).

ind. unique
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The next result provides another case where individual implies joint convergence.
Lemma 6.27 (Condition for joint convergence in distribution)

If X, % Xand¥, = ceRY then (X,,Y,) 5 (X,c).

Proof. Let (X,,Y,) ~ F,, (X,Y) ~ F(z,y) = P(X < z,c <y) = Fx(x)
Lie,00)(y), and let (z,y) € C(F), e >0, e=(g...,¢).

) Fu(w,y) 2 B(X,<,Y, <y, |V, c|<c) + B((X, <, Y, <y, ||V, ] >2)
<SP(Xp <, c<y+e)+B(V, —c| >2)

= FXn(w)ﬂ[c,oo)(y +€) +E(HYH - C‘ > ),

hence lim sup,,_, ., Fn(x,y) %,Fx(w)l[c,oo) (y+e)+0=F(x,y+e).
i) Asze C(Fx), Vo >03nyeN: Fx, (x) > Fx(x)— 0 ¥Yn > ng, so that
F(:I,‘, Y- 5) = FX(w)]]‘[C,OO)(y - E)ﬂ; (FXn (.CL’) + 6)1[0,00)(y - 6)

< Fx, (%) 1jco0) (Y —e)+0=P(X, <z c<y—e)+6

tot.

= PX,<z, c<y—e, [|[Y,—c| <¢e)
+P(Xn§93, ng*‘gv HKI*CH >€)+6
© Marius Hofert
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<P(X,<z Y, <y +P(Y,—¢c|>e)+4d
= Fy(z,y) + PV, — ¢ >2)+9,
hence F(x,y — s)(% liminf, o Fp(x,y) + 0+ 4.
So o
Flx,y—¢e)—0< lim inf 3, (z,y) <limsup F,(z,y) < F(x,y+e).

W n— n—00

Let § — 0+, we obtain
Flz,y—¢) < F(z,y +e¢).

Letting ¢ — 0+ and using (x,y) € C(F), we obtain lim,,_, Fy,(x,y) = F(x,y).
O

Theorem 6.28 (Slutsky’s theorem)

If X, % XandV, 5 ceR% then X, +Y, & X+cand X,Y, =
cX.

Proof. Apply L. 6.27 and the CMT with the continuous h(x,y) = « + y and

h(z,y) = zy = (11, -, TayYa)- o
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6.6 Counterexamples

Lemma 6.29 (Independent two-point distributions)
If (Xy)nen are independent with P(X,, =0) =1 —1/n® and P(X,, =n) = 1/n®
Vn € Nand o > 0, then

1) X,, = 0if and only if a > 1;
2) X;, 5 0Va>0; and
3) X, 5 0 if and only if o > p.

Proof.
1) Since P(|X,, — 0] > &) = IP(X > ¢e) = P(X, = n) = X, we have

BC1

Yol P(| X, — 0] > ) =30 < o0& a>1 Then P(X, =nio) =

1(p,1)(c) and therefore P(lim:%;an =0)=P(X, =0 abfm)=1-P(X, i
n io) = lyo>1y which is 1iff a > 1.
2) Va>0,Ve >0, P(X, —0] >e) T 5 = 0.
3) Va >0, Vp > 0, hmnHoO (| Xn — 0P) = limp—00 E(XE) = limy—yo0(n? -
(1

LY = limy, 00 7P~ which is 0iff o > p (1iff @ = pand 0 iff e € (0,p)). O

nO{
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Example 6.30 (Counterexamples for modes of convergence)
Let (Xy)nen be a sequence of rvs defined on (2, F,P).

1) Let (Xy)nen with P(X,, = 0) = 1—1/n® and P(X,, = n) = 1/n%, and
€ (0,1]. Then (X,)nen converges i.p. but not a.s..

Proof. By L. 6.29 2), X, % 0 but, by L. 6.29 1), X,, =¥ 0. Note that

— oo n — oo

we cannot have a.s. convergence to any other limit, say Y, either, since then
X, > Y#0¢ O

2) Let (Xp)neny with P(X,, = 0) = 1—1/n* and P(X,, = n) = 1/n%, and
a € (0,p). Then (X,)nen converges i.p. but not in LP, p € [1,00).

Proof. By L. 6.29 2), X, % 0 but, by L. 6.29 3), X, = 0. As before,

—r 00 n — 0o

(X5 )nen can also not converge to any other limit in LP either. O

3) Let (Xp)neny with P(X,, = 0) = 1—1/n* and P(X,, = n) = 1/n%, and
a € (1,p] for some p > 1. Then (X,,)nen converges a.s. but not in LP,

p € [1,00).
Proof. By L. 6.29 1), X, *5 0 but, by L. 6.29 3), X, = 0. As before,
(X5 )nen can also not converge to any other limit in LP either. O
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4) Consider the typewriter sequence Xnwm-1) , = :H.[k Lk T eENk=1,....n
2 _
(or: X, = Lot neghir) ke Ny, ne [2’f,2’f+1)) (Q,}",]P’) = ([0,1], B(o,

2k

1), ). 50 X1 = Ly, Xo = T ap, X5 = Iy . Xa = Loy, X = Ly 3
X = ]1[2 ) ete. Then (X,,)nen converges in LP, p € [1,00), but not a.s..
37

Proof. Yk € {1,....n}, E(| X nt—ny , —OPP) = E(Ljeor &) = LA(5, B)) =
2 n 'n

1 — 0Vp € [1,00) so that X, L:,; 0, but Vw € [0,1] and all n €

N, 3k € {1,...,n} : Xn(n2,1)+k(w) = 1 (so limsup,, oo Xm(w) = 1)

and Xn(n_1)+k(w) = 0 Vk except one (so liminf,, o X;m(w) = 0), hence

2

(Xim)men does not converge in any w € €2, so also not a.s.. O
5) Let X be Rademacher (P(X = —-1)=P(X =1)=1/2) and X,, := (—1)"X,

n € N. Then (X,,)nen converges in distribution, but not i.p.

Proof. Clearly, X = X; = Xy, = ..., s0 X, :d>m X. However, Ve € (0,2),
P(0>¢e) =0, ne?2N,
P2>¢)=1, ne2N-1,

so that lim,, o P(|X;, — X| > ¢) does not exist. O
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6) Let (X )nen be as in 5). Then (X,,)nen converges in distribution, but not in
LP, p e l,00).
Proof. We showed in 5) that X,, % X, but X, = X. If X, & X,

n — oo

then, by L. 6.13, X, 7lf>m X 7. O

6.7 Relationships between modes of convergence

We have shown:

T.6.7
v ga v (C.6.17)
—
X, S X Y x s x Ef’fl) Xn 5 X Fne X2 X
¢ 0 —
€667 o~ & C6I8
© S| Q)
Qy d‘ﬂ\ﬁ\«iuwj %ﬁ’g
q} N wi 3 &
L4 L.6.12 P
X, 5 x =2 x XX
qg>p=>1
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6.8 Convergence of quantile functions

Proposition 6.31 (Convergence of quantile functions)
If Fo(z) = F(z) Vo € C(F), then F;l(u)nij_l(u) Vu e (0,1)NC(FY).

Proof. We show F~!(u) g) lim inf,, 00 F, H(u) < limsup,, o, Fi, ' (u) < F~1(u)

Yu € (0,1)NC(F1). Solet u € (0,1) NC(F™1).

i) C(F)¢ at most countable = Ve > 0, 3z € O(F) : F"'(u) —c<x <
F~Yu) and lim, o0 Fn(x) E%( )F(w)dejpt)jwu = F,(x) < u Vn suf-
ficiently large = " Ft ( ) > = > FYu) — ¢ ¥n sufficiently large =
liminf, o F, ( ) > x> F~ (u)—e =, liminfy o0 F) Lu) > F~Y(u).

i) C(F)¢ at most countable = Ve > 0, Vu >, 32 € O(F) : F71(u)) <

o< FHu) + e and lim, oo Fp(z) | = F(2') > u > u =
z' € C(F) F’l(u’) <z ass.

Fo(a!) > u Vn sufficiently large = CE N u) <af < FYW) + 2 Vn suffi-
ciently large = lim sup,,_,, Fj; ' (u )< v < Fl(u J+e = limsup, FY

w) < F1(u) lim $p, o0 Fy () < F1 (1), O

w = ut+ e C(F Y
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6.9 Strong law of large numbers

Theorem 6.32 (Strong law of large numbers (SLLN))
If (X)nen € LY is iid with mean pu = E(X}), then X,, :=

Proof. Not covered. Instead, we give the proof of the weak law of large numbers
(WLLN) under the assumption (X, )neny € L? with 02 = var(X;) and with
convergence i.p.: = 37 | X; 5 p. Ve >0, we have

= - E(X, —p)? var(X,,)
0<B(Ky—pl > ) < B(Ky—p| 2 0) < HEn ) vl

2
o7 . O

C,Fi332) 7182 n — oo

= We already knew from E. 4.12 2) that P(lim,,- X,, = c € R) £, {0,1}.
®  Statistics:

> If X1, Xo,... ® F with E(|X1]) < oo, the sample mean X,, converges
a.s. to the (true) mean p = E(X;) of (the underlying) F'. Under these
assumptions, we can thus ‘see’ p even though we don't know F'.
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» Although for realizations, Xn is a real number, statistical theory is concerned
with properties of X, as an approximation to . and thus studies X, as a rv.
SLLN

» Monte Carlo simulation for approximating means: = E(h(X)) =~ h( )

> For iid (X} )nen, the mean of 1,y ,, always exists for fixed = 6 R%, so
by the SLLN, we have pointwise a.s. convergence F,,(x) = %Z?ZI Lix,<a}
5 E(lgx,<zy) = P(X1 < @) = F(z) Vo € R? of the edf F,.

n — oo

Example 6.33 (SLLN for the probability of rolling a 6)
Let Xi,..., X, ™ B(1,1/6). By the SLLN, X,, *% pu=E(X;)=P(X,=1) =
1/6. The Ihs (rhs) shows 1 (200) simulated paths n + X, all converging to .

) o
] — u=1/6 — — p=1/6
— X, foriid X, ~ B(1,1/6) — (Kao)E2for iid X, , ~ B(1,1/6)

T T T T T T
1 5 10 50 500 5000 1 5 10 50 500 5000
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Example 6.34 (SLLN for Pareto rvs)

Let X, X1,..., X, ® Par(0), > 0, with F(z) =1 — (1 +2)7% x> 0, mean
E(X) = 27, 0 > 1, and oo otherwise. The three figures show 200 simulated paths
n— X, for =3 (E(X)=12), 0=1.1(E(X)=10) and § = 0.5 (E(X) = 0),

from which we see the necessary requirement of an existing mean.

m S
° 2 7
g | T &
5 E
8
° 8 ¢ |
[=3 + -
8 - &
= - ©
il 8 |
s g %
8
S & <
S 3
il 2
o 8 k1
g %
S - 8
¢
i o g
2 | L s
g # g
il F
o E
~ —— u=05 9 —— p=10 ~
S 4 — (Roe)¥ 2 foriid X, , ~ Par(3) 3 — (Ko)B7™ for iid X, , ~ Par(1.1) < — (X0 )22 for iid X, ~ Par(0.5)
< T T T T T T T T T T T T T T T T 2 T T T T T T T T
1 5 10 50 500 5000 1 5 10 50 500 5000 1 5 10 50 500 5000
n n n
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as,

= F(x), © © R? of edfs is even uniform.

n — oo

The pointwise convergence F,(x)

Theorem 6.35 (Glivenko—Cantelli)
If X1,...,X, ~ F, then SUpgepd |[Fn(x) — F(z)] 23 0.

n — oo

Proof. We consider d = 1, the proof for d > 2 is given in Kiefer and Wolfowitz
(1958). We show that the supremum is bounded above by the maximal distance
at finitely-many points and apply the SLLN finitely-many times.

1) For x € [a,b), monotonicity of the dfs F}, and F implies that

Fule) = F(#) 2 Fala) = F(b—) = (Fa(a) — F(a)) — (F(b-) — F(a)
F,(2) — F(z) < Fp(b—) — F(a) = (F(b—) — F(b—)) + (F(b—) — F(a))

z € [c, d] implies

S (@) — Fla)] < max{|F(a) = F(a)l, [Fu(b-) = F(b-)]} +
(F(b—) — F(a)).

2) Ve €(0,3], 3n. € N and a partition —o0 =: 25 < 2y < -+ < 2, = o0 such
that F(zp—) — F(zp—1) < § forall k=1,..., n.: if F'is continuous we can
take z, = F1(5k), k =0,1,2,...,[3/e], nc := [3/e] + 1, and otherwise, F
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can jump at most [1/y] times > y, so include those = : F'(z) — F(z—) >

wlm

into the partition.
3) Since each = € R lies in precisely one partition element, we apply 1) with

a=zp_1and b=z, fork=1,... n. to get

sup | F () — F(z)|
rzeR

[ ™

< max {max{|F,(zx_1) — F(zk_1)|, |Fn(zi—) — F(zi—=)|}} + -

I 1<k<n. .

mae {| (1) = Fleie) [} + max {| Fa(zsn) = Flao) [+ 5

maxk{ck}:maxk{dk} 1Sk§n5

o

maxy {max{cg,dp}} <

:> 0 (SLLN) :> 0 (SLLN)
E € € .
<-4+ -+ =-=c¢ as. for n sufficiently large. O

3 3 3

The rate of convergence of sup,cp |Fn(x) — F(z)| is quantified by the Dvoretzky—
Kiefer-Wolfowitz (DKW) inequality
2

P(sup |F(z) — F(x)] > ) <272, >0,
zeR

for d =1 and P(sup,cpa |Fn(z) — F(x)| > ¢) < (n+ 1)de=2<" for d > 2.
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Example 6.36 (Glivenko—Cantelli theorem for Par(1/2) rvs)
Let X1,..., X, ~ Par(1/2) (no mean). The three figures show F(z) =1 — (1 +

z)~Y2 x>0, and F, for n € {100,1000,10000}.

)
-

—— F(x)for Par(0.5) —— F(x) for Par(0.5) —— F(x) for Par(0.5)
S —— Fo(x) forn=100 2 —— Fq(x) forn=1000 2 —— Fq(x) for n=10000

T T T T T T T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
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7 Characteristic functions
7.1 Basics

7.2 The central limit theorem
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7.1 Basics

= Motivation: For X; ~ F;, i =1,...,n, we are often interested in

n _ 1 n
Spi=) Xi and Xp:=—3 X
=1 =1

Example: Total/average loss of n observations.

= Problem: Even if Xq,..., , X,, are independent, we only get a convolution
formula for P(S,, < x):

Fs,(v) =P(X1+ -+ X, <2) = E(1{x, 4t X,<a})

Chag:rf/ Loy pootan<ay AF (21, - - -, Tn)
Toreli /]R o / R H{Ilﬁxfmgf...fszzn} dFy (5171)dF2($2) cee an(xn)
— / . / E(H{Xlgl’f}?gf...fgj”}) dF2(.7)2) e an(l‘n)

R R
E / . / Fl(l’ —Tro9 — ... :L‘n) dFQ(l‘Q) .. an(:L'n)

R R

® Question: How can we approximate Iy, or F'g 7
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Example 7.1 (Normality appearing when rolling a 6)
The Ihs figure shows the rhs figure of E. 6.33 with n = 500 indicated. For this n,
we have B = 200 realizations (X, ;)2 ; of X,,. Standardizing them with 1 = 1/6,
o = 5/36 leads to (\/ﬁw)bip plotted on the rhs together with a N(0, 1)
sample of size B. We see a rough similarity of the two samples (= idea).

<
—

0.8

0.6

0.4

0.2

0.0

n=1/6
— (Ko, )22 for iid X;,» ~ B(L,1/6)

© Marius Hofert
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® |dea: Use a transform that turns sums of independent rvs into products, then
use E(T[7—; X;) = [[j=1 E(X;) = E(X1)". One is the moment-generating
function M (t) = E(etTX) for t in some open neighbourhood of 0.

= Problem: Does not always exist (e.g. not for Cauchy distributed X).

Definition 7.2 (Characteristic function)
The characteristic function (cf) ¢x : R* — C of X is ¢x (t) = E(eitTX), t € RY.

Lemma 7.3 (Properties of cfs)
1) 6x(t) = E(cos(tT X)) + iB(sin(t7 X)) = Re(éx (£)) + i Im(éx (£)), ¢ € RY.
2) E (\e”TXD =1, t € RY (integrability).
3) Cfs exists Vt € R%.
4) lpx(t)] <1, t€R?, and ¢x(0) = 1.
) ¢x is uniformly continuous.
)
)

o1

6) daxp(t) = Pox(ATE), ¢t € R

7) If X1,...,Xg4 are independent, then ¢x(t) = HJ 10x,(t), t € RY. In
d

particular, ¢Zj:1Xj (t) =151 ox; (1), t € R.
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Proof.
1) Euler’s formula € = cos(z) + isin(x), € R, and linearity imply ¢x (t) =
E(cos(t' X)) +iE(sin(t" X)), t € R%.

2) Since |z + iy| = V22 + y?,

et X| = | cos(t’ X) +isin(t’ X)| = \/COSZ(tTX) +sin’(tTX) =1 (5)

and thus E(\eitTXD =1,teR%
3) By 2) and Remark 5.20, ¢x (t) exists V¢ € R%.
4) lox ()] < E(le" X|) =1, t € R?, and ¢x(0) = E(e”) = 1.

5) [¢x(t + h) — dx(b)] = [E( X (M X — 1) < E(je X (M X 1)) =

E(1-|e?"" X —1]). Now ¢ih'X —1 :’_%05: 0 and |eih' X — 1| < lethTX| 41 <
2¢e ! = limp_0+ E(|leih"X —1|) =0, so ¢x is uniformly continuous.

6) daxip(t) = E(eitT(AXer)) _ eithE(eitT(AX)) _ eithqbX(ATt), t e RY.

7) ox(t) = E(eX) = B(e' 251 5%) = B([TL, o) 2 [Ty E(e) =

H?:l #x;,(tj). The second statement follows from ¢x (t) = ¢Zd . @). O
t=1tl =1 i
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Example 7.4 (Cf of normal distribution)

1) For Z ~ N(0, 1), point-symmetry of sin about 0 implies that E(sin(tZ)) = 0
and thus ¢, (1) = E(cos(tZ)) = |. cos(tz)p(z)dz. By the Leibniz integral
rule (general: if f(t, z) and Btf(t z) are continuous in z and a,b are continu-
ously differentiable, then & [*) f(t,2) dz = F(t,b(1))V(t) — f(t,a(t)a (1) +
Jit) & F(t, 2) dz), so that

@, (t) = /(f) sin(tz)p(z) dz = /Sin(tz)gol(z) dz
iz [ R

—zp(z) = ¢'(2)

= [sin(t2)p(2)]%% — t/_ cos(tz)p(z)dz =0—0—tp(t).

by parts

= dly(t) = ~téz(t) = (log(@z(1)) = 5473 = ~t = log(éz(t) = —5 +,

2 2
¢z(0) =1

2) f X = p+ AZ ~N(u, ) for © = AAT, then

¢X(t) — eitTu,E(eitTAZ) H¢Z = zt n H ()7 E

f:ATt ind.
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For d = 1, we obtain the cf ¢x () = 27" ¢ € R, of N(y, 02).

Theorem 7.5 (Lévy’s continuity theorem)

1) X, n:d>oo X = (bXn(t) n:)oo ¢X(t) vVt cRe

2) If ¢(t) := lim, o ¢x,, (t) exists VE € R% and is continuous at 0, then
X, - X for a random vector X with cf ¢.

n — oo

Proof.
1) Vt e RY, h(z) =¢it'® = cos(t'x) + isin(t'x) is bounded (by 1) and con-

Eules

tinuous (composition) = ¢x, () = E(eitTX") o ]E(eitTX) = ¢x(t).

portmanteau

2) Needs more work. O
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Theorem 7.6 (Cramér—Wold device)
If X, X, n €N, are random vectors, X, % X iffa’ X, % a'XVaeRY

n — oo

Proof.
“=": Apply the CMT with h(z) := a' .
e gx, (8) = E(et X)) = ¢prx, (1) 3 drx(1) = ox(t) ¥t € R By

L. 7.3 5), ¢x is continuous at 0 (even uniformly) = X, _% X O

T.752) oo
Corollary 7.7
Let X,Y be two random vectors. Then X =Y iffa’ X =a'Y Va € R%
Lemma 7.8 (Analytic auxnllary results)
. m+1 m

1) VYm € Ny, ‘e“‘ - > Zz,) ‘ < mln{ m;lr ,, 2';;‘, } z € R.
2) Va R, let I,(T) := [T 52D g4 7 > 0, and 1,(0) := 0. Then I_,(T) =

—1,(T) and I,(T) = I («T). Furthermore, I,(T), T > 0, is continuous. And

-5, a<Q,
lim I,(T) — <0, a=0,
T—o0 T—ooe | o

bE o > 0

3) VT >0 and a € R, we have |I,(T)| < supzs, |11 (T)] < .
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Proof.
1) a) Taylor's theorem with integral remainder states that f(z) = > /L, %(m—
zo)* + [ w( t)™dt. Applied to f(x) = € about z9 = 0, we

!
have e = 371" 2, 77:,1 o “5(1, — )™ dt.
b) Therefore, V2 > 0, o W] = 7:::1 et ( dt| M=
i Jo (e =ty de = ,,3'413
Q) e = S G “(x t>m Yt = Sk B
(JF (a—tym=tar =) = s S e e
——f(z o™ ’
so "0, ;\,) ‘% <m ufo et =T (z—t)m T dt < (m— 1)@212%-
d) = e — S /' ’ < min % ),’7'17;'}, x > 0. Similarly for z < 0.

Pulling the two cases together, we obtain the result as stated.

2) The first two identities trivially hold for T'= 0. And for T > 0, I_,(T) =
o et gy mh _ sinel) gy — 1 (T) and Io(T) = [ 28 4y =

I (aT). For the remaining parts, see the additional slides. O
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Theorem 7.9 (Uniqueness)
dx(t) = ¢y (t) Vt € R iff X =Y, so cfs uniquely characterize distributions.

Proof. "<" v by definition. Consider “=". For d = 1, we derive an inversion
formula; the case d > 1 follows thereafter.

|) ‘em:_l’ L.7.8i) mln{lﬂf‘ 2} < ’«T‘ =Va<b, ‘M| _ ‘ —ztb’ lefzt(jt b) _ 1‘
_’Lt(a b) 1 t b ita ,—itb
= [¢] |(<)| (\il )|_b*” so [* T|7(“\ |dt < 2T]b—a\<

oo VT > 0, which justifies the following application of Fub|n|
i) We have

1 T g—ita _ ,—ith wio ett(z— a) —git(z— b)
27T/ ox(t)d Fubii 27r/ / L dtdF(z)

T _ _
Eulersformula / / Sln 1; a ) Sln(t( b)) dt dF(x)

pomt symm. 27T t

- 7T/ / sin(t(z —a );sm(t(m b)) dt dF ()

( )

—*/_oo”x o(T) = Iy (T)) dF ().

™
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iii) We have -5 —(-5)=0, z<a,
0-(-H=3 o-a

TIEI;O(I:c—a(T) = I—(T)) L782) 5—(=3)=m z€(ab),
5—0=7, x =b,
5—45=0, x > b,

o) E(hmT—>oo M) — %]P(X

iv) Therefore

a)+1-P(X € (a.0)+3P(X =b).

) 1 T e—ita _ e—itb ) 1 0o
Jim oo [ ot Jim — [ (a1~ Lo(T)) AP (a)
7.83 > . Ia?—a T I S/ IP) X: ]P> X:
T )/ tim LemalD Lot @) 4oy _ p(po) - p(a)+ EEZY  BE=D),
oM J_ T —00 s i) 2 2

Adding and subtracting P(X = b), we obtain the inversion formula

P(X =a) P(X=0) 1 /T e~ita_g~ith

F(b)—F(a)+ lim

9 2 Toeo 270 ox(t)dt.

it
Ford > 1, ¢,mx(t) = E(e"'X) = ¢x(ta) = ¢y(ta) = ¢,ry(t) ¥Vt € R

backwards
uniqueness d
f‘%%laTX:aTYVaERdC:?7/. O
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If F'is continuous, the inversion formula for general d can be shown to be

] 1 d e—itjaj _ e—itjbj
A[a,b]F = Th—IE;O (27-[-)d A_T T]a <]1i[1 ’Lt] >¢X (t) dta

if F' has a density, then f(x) = ﬁ Jra e~ T (t) dt.

Corollary 7.10
bx is real iff dx(t) = dx(—t) = dp_x(t), t € RY, soiff X = — X, ie. X is
radially symmetric about O.

Proof. ¢x is real iff
ox(t) = Bx(t) = E(cos(tT X)) — iE(sin(t” X)) 2 g (~t) = E(eD )
=E(et X)) = p_x(t), teR?
so, by uniqueness, iff X = —X. O
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Proposition 7.11 (Characterization of N(u, X))
X ~N(u,Y) iffa’ X ~N(a"p,a’Sa) for all @ € R%.

Proof.

=" X~ N(p, ) = ¢ x () = E(e
_ eit(aTM)—%ﬁ(uTk}a) teR =

! E.7.42)

a'X ~N(a'"u,aa).

“<" Leta' X ~N(a'p,a"¥a). fY ~N(y, ), “=" implies that a' Y ~
N(a"p,a’%a), so a'Y = a' X, and that Ya € R? = X =Y. Since
Y ~ N(u,X), we obtain that X ~ N(u, X). O

i(ta) T ) ¢X( ) —_ €i(m)—'—,u—%(ta)TE(ta)

E.7.42)

b,7x is the cf of N(a' p,a'Ya) =

uniqueness

Corollary 7.12 (Special cases)

» Margins: X ~N(u,X) =7 X; ~N(p;,%55), j € {1,...,d}.

= Sums: X ~ N(u,X) afgl Sa ~N(Z 1 s Zcfj 1845). If Xy, ..., X, are
uncorrelated, then Sy ~ N(Z] 1 15, Zj 1255) mmg' N(dp, do?).

= Means: X ~ N(u,X) 2 X~ N( d 1va dZZJ 125). W X0, ..., Xg
are uncorrelated, then Xd ~N(% j:1 1, ijl i) TE N (u, %2)

means, var.
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7.2 The central limit theorem

fn—= [, an — a # fulan) — f(a). Example: fy(z) := 2" — Ly = f(2),
r€0,1],anda, :=1-1/n = 1=1a= fu(an) = (1-1/n)" — e 1 #1 = f(a).
Lemma 7.13 (Convergence to the exponential)

If ap = a, then limy, 00 (1 4 %2)" = €.

_\k
Proof. log(1+ z)" = 73;) VT S o(—2)*, so log(1 +2) = — 3272, @.
ayor — k—2 k
1) uog< +2) —a| T G| < 2, e = 2?2 B <
ARl < #EYR(1/2)F = @ Vial <1/2.

2) % — 0,50 3ng: |“"|<1/2 Vn > ng. Also, |ay,|

3) Hence Vn > ny,
log<1 + an) _n
n n

< M Vn for some M.

(an)nenconv.

2 2

a M
gn(”> < — = 0.
1) n 2) n nToe

=n

nlog(l + a”) —an
n

4) Therefore, (14 %) —a A;ﬁq‘ Inlog(1 + %) — ap| + |an — ’ 20, s0
log((1+9)") = a = (14 5%)" — e 0
© Marius Hofert exp(:) cont.

Section 7.2 | p. 283



Lemma 7.14 (Expansion of cfs near 0)
If E(|X|™) < oo for m € N, then ¢x(t) = > rep

DY R(XF) + o|t™) for t — 0.

Proof. Recall that i = o(g) iff 45l — 0. By L. 7.81),

v s (i) : { [ 2|fl?|m}
Zl’_ N R'
¢ kz:% e N T G

Using x = tX and taking expectations, we obtain

O (i) "E(XF) | itx s (@X)F
]m(ﬂ—Zk! SE([e"™ -3
k=0 k=0
t| x| 21X |™
< o LT 2X17Y
(m+1)!" m!
Pointwise, mm{%, 2|X‘m} —,0 and the term is bounded by 2‘X| which

is integrable by assumption 2" E(mm{ |t”ffll;1, 21X)™ }) 7 E(0) =0, so equals

m!

o(1) for t — 0. Furthermore, [t|™0(1) = o(|t|™) for t — 0 V. O
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We now have all ingredients ready to prove the central limit theorem

Theorem 7.15 (Central limit theorem (CLT))

If (Xn)nen is a sequence of iid rvs with 1 = E(X;) and 02 = var(X7) < oo,
then X —
vt 4 No,1).
O’ n — oo

Proof. With Z;, := (X} — 1) /o we have left to show that \/nZ, % N(0,1).

n — oo

=S © i-= 27 n t
bz, (1) = B('7 i ) = H E(e Vi) < 0%, (ﬁ)

L.7.14,m =2 .t t2/n t2 "
att et/ (1 +Z%E(Z1) 9 E(Zl) (n)>
e () 5 —o<t2/n>/<1/n>)" Lip 2

E(f_l n

T = /nZ, —> Z with cf ¢z(t) =

E.7.41)

T e 7 O N(0, 1), O
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Remark 7.16
1) Note that \/ﬁ)_(na—u — Zizl Xi—nu.

o

2) The factor /1 is crucial in the CLT, as M =0 by the SLLN.

3) By the CLT, we (approximately) know X, ppg N(u, —) and S, “’g N(np, no?)
even though we don't know F' (only that it has finite second moment).

4) Under iid and finite second moment, X, ppg N(p, 7) Compare:
® For an iid sequences from any distribution with finite second moments,
L. 5.32 implies that [£(X,,) = x and var(X,,) = Ur—j (just the distribution of
X, was unclear before).
= If X1,..., X, ¥ N(p,0?) = X, ~N(u,%). The CLT asymptotically
obtains the same result, JUSt Wlth the assumption of normality replaced by a
second moment.

5) If (Xn)nen is iid with g = (E(X;),....E(X;4)) and finite covariances
Y g, = cov(Xij, X1j,), j1,J2 € {1,...,d}, the Cramér-Wold device and
CLT imply the multivariate CLT /n(X, — 1) $ N(0,X).

6) If E(|X1|*) < oo, the Berry—Esseen Theorem states that there exists a constant
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€ (1/+/2m,0.4748) such that

cE(| X4 3)
sup | F () —P(n)| < —Z—~
zeTPR)| Xn An—H ( ) ( )’ \/ﬁ

This provides a rate of convergence in the CLT under known third moment.
For a proof (for larger c¢), see Durrett (2019, Theorem 3.4.17).

7) A generalization of the CLT is the Lindeberg—Feller CLT: Here (X,,)nen are in-
dependent with 02 = var(X,,) < oo, i, = E(X,,) and s2 = var(3Xj_; Xi) =
S p_1 0. If the Lindeberg condition

, neN.

1 n
Ve >0, %g (X% — ) ]l\xks;%\%) = 0

holds, then Z’“%fk_m <% N(0,1). On can show that the Lindeberg

n — oo

condition holds if the Lyapunov condition

S E(1 X — prl*H0) 0

36 >0,
holds.
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Example 7.17 (E. 7.1 continued)
We visually assess the sample (\/HX"‘b_“)szl from E. 7.1 against N(0, 1) with

g

a Q-Q plot (Ihs; {(Fy ' (F22), 2)) = (Fy '(52), By Y(2)) ri= 1, n} for

n n n n

Fy = ®, so that if Fy &~ F, the points lie on the line y = z) and a density estimate
(rhs).

<
o

-W/o)p®

Density at x
0.2
|

Sample quantiles (V500 (Xsoo, »

had
2
o~
! /
o /o densiy
S — Estmate from (Y800 (Ragn » - ) o)
T T T T T T
-3 -2 -1 0 1 2 3 -4 -2 0 2 4
Theoretical quantiles of N(0,1) X
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8 Conditional expectation
8.1 Ordinary conditional probability and implied conditional expectation

8.2 Measure-theoretic conditional expectation and implied conditional prob-
ability

8.3 Applications
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8.1 Ordinary conditional probability and implied
conditional expectation

= |dea: Calculate expectations (incl. probabilities) under additional information.

= Recall: On a probability space (2, F,P), if B ¢ 7 :P(B) >0, P(A|B) =

PEP‘?;J)B), A € F, is the (ordinary) conditional probability of A given B.

= Motivation: For a random vector X5 : Q — R%, we are often interested in

A={Xs <z} ={we Q: Xo(w) <x2}. If P(B) > 0, then
{Xy < a2} N B)
P(B) ’

is the (ordinary) conditional df of X, given B; see E. 4.17, where Fx|_;

P
Fx, p(x2) =P(X2 < x2| B) = ( xs € RY,

appeared. If it exists, the mean of F'x,|p is the (ordinary) conditional expectation
of Xy given B.

" Interpretation: For fixed B, x2 — Fx, p(%2) is a df depending on B. Often-
times, B = {Xl = 331} for (Xl,XQ) ~ F.
" Question: What if Fx, is continuous, so P(5B) = 07
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» |f F'x, is discrete, then B = {X; = ¢} satisfies P(B) > 0 Va; € supp(Fx,)

and we can use

P(Xo <axo| Xy = x1), @1 €supp(Fkx,),

Fx, i x, (22| ®1) = { (6)

e.g. 0, otherwise.

» |f F'x, has density fx,, then P(X; =x;) =0Vx; € R% and using (6) is no
longer possible.
" |dea: Let (X1, X3) ~ F. For x; € R% :fX x1) >0, h=(hy,...,hq,) >0,
1 1
]P’(Xl € (wl — h,wl],XQ < :132)
P(Xl S (:131 — h,$1]>
A _ i \1F
Ay @)t
A(w17h,w1]FX1

IP)(XQ S IEQ’Xl S (a}l - hwlD =

® |f I has density f (similarly if X; has a density and X5 is discrete) and
(x1,22) € RY: fx, (1) > 0, then
*2 fa:li f(il,iﬁg) dil d3~72
P(Xs < 2| X1 € (@1 — h,]) = 1= 21=h et
(Xz <22 [ X € (mn ) Jern Ix, (1) &
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fio dl
H LBy

ﬁfxl X, (Z1) d&y

T2 [z, &2) Ao

ho o+ le (371)

by the Lebesgue differentiation theorem. One would thus like to define

a:l _p f(@1, Z2) dEy do

FXZ\XI(CCZ‘ml) = h,li>nOl+P(X2 < CCQ‘X] € (LE] — h,wl]), (7)

with conditional density fx, x, (z2|®1) = %FXﬂXl (x2|x1) being

f(z1,22) f
: - s X (.’131) > (),

Jxo1x, (@ | 1) = § Pate) s 22 (8)
eg. 0, otherwise.

®  Although this is indeed often used, there are two problems:
1) A joint density does not always exist.
2) Even if, ‘definitions’ such as (7) may lead to ill-definedness (different results
depending on how the limit is computed).
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Example 8.1 (Borel—Kolmogorov paradox for uniform distr. on semi-circle)

Question: If (X1, X5) ~ U(D)for D ={(5}) a1 € [-1,1],22 € [0,,/1 — 23] },

what is P(X, € [0,1/2] | X; = 0)?
Version 1 (Cartesian coordinates):

f(@1,22) = 375 1p((21,22)) = 21p((w1,22)) and fx, (21) = 2

2¢y/1—a? ®) flx1, . 1
= 2 @) 50 o (@2 |en) 2SS = s Tp((on,22))

Hence fx, x, (@2 ]0) = Tjo.1j(22), 50 P(Xs € [0,1/2]| X1 = 0) = f3/* 1dwy =
Version 2 (Polar coordinates):
Substituting (’31 ) = (TCOS(G) ) s h(r, 0) with det(( a0, 9)))

2
1—z%

N

cos(0) —rsin(0) ‘ .

rsin(6) sin(f) rcos(6)
r, we have 1 = [, 2d(21,20) = = J5 Jo 2rdrdf, so fre(r,0) = 2ris a den-
r,0
sity on [0, 1] x [0, 7. Thus fo(0) = fi 2rdr =L and fre(r|60) = f§§§)> =
2r —or, re0,1], soP(Re(0,1/2]|0 =n/2) = [y 2rdr = L.

Hence we can get different limits if we approximate the same “slice” differently.

Instead, we need a measure-theoretic definition of (first conditional expectations

and then) conditional probabilities.
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8.2 Measure-theoretic conditional expectation and
implied conditional probability

Definition 8.2 (Conditional expectation, conditional probability, etc.)
Let (2, F,P) be a probability space, G C F a o-algebra on Q and X €

LY(Q, F,P). The conditional expectation of X given G (notation: ) is
any Y : Q) — R such that

i) , i.e. Y is G-measurable (= characteristics of a rv); and

i) (= characteristics of an expectation).

Any such Y is called a version of E(X |G).

" For X; € LYQ,F,P),j=1,...,d E(X|G) = (E(X1|G),...,E(Xa|9)).

» If X € LP(Q, F,P), E(X?|G) is the conditional pth moment of X given G.
var(X |G) := E((X—E(X |G))? ‘ g) is the conditional variance of X given G.

" P(A|G):=E(14|G), A€ F,is a version of the cond. prob. of A given G.

® |f (Z;)ier are rvs, then E(X | Z;,i € [) :=E(X |0(Z;,i € I)).

E(X |G) is any member of the equivalence class of rvs that satisfy the defining
properties i)—ii). E(X | G) is often found by a guess and verification of i)—ii).
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Lemma 8.3 (Integrability)
Any Y : Q — R satisfying i)—ii) is indeed integrable.

Proof. With A :={Y > 0} = Y~1([0,)) € G, we have

) = /YdP+/ (~Y)dP jég/XdIPJr/ (—X)dP
5.86) c A e

/|X|dIP’+/ 1X|dP = /]X]dIP _ E(X))<oo. O
mon. L.5.86) ass.

Theorem 8.4 (Existence and uniqueness a.s.)
E(X |G) exists and is unique a.s..

Proof.
®m  Consider existence. Assume first that X > 0. = Z/(A) =E(X14), A€g,
is a measure on (£2,G). By L. 5.11 6), v < P. Therefore

dv
AXdPEE(XﬂA) v [dr aeg,

for the P-a.s. unique integrable, and thus (by definition) G-measurable, RN

derivative d% 2 — [0,00). By definition, (‘i—’w’) is thus a version of E(X | G).
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" Ingeneral,let X =XT—X"and VY :=E(X |G), VT :=E(XT|G). Then
Y:=Y" -V €@, Y isintegrable (as Y~,Y ™" are by L. 8.3) and

sum

/XdIP’hn /X+dIF’ /X dP = /Y+d]P’ /Y dIP’de"f"Y/YdIP’,

forall A€ G, so Y is a version of E(X | G).

= Consider uniqueness as. If Y,Y : Q — R satisfy i)=ii), then E(Y14) 5

E(X14) = E(Y14) VA € G and, by L. 8.3, Y,Y are integrable = Y=Y
as..

Remark 8.5 (Conditional probability)

= Equalities such as V' = [E(X |G) are understood a.s., so ¥ = E(X |G), so
we implicitly work with a representative of the equivalence class of a.s. equal
rvs. Another convention: E(X [ A) :=E(X |o(A)), ACF, and E(X | 7) :=
E(X |o(Z)) for a random element Z.

= |f we consider P(A |G) = E(1 4 | G) for countably-many different A € F, there is
no problem (the countable union of null sets is a null set). But for uncountably-

O

many different A € F, we need to be careful, e.g. when defining a conditional

distribution function of X given G, so P(X < z|G), = € R.
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= Generally, it is wrong that A — P(A|G) is a probability measure since P(A | G)
is only defined up to a.s. equality and so this map may not be well-defined (we
would need to specify a particular version).

= Even then, A — P(A|G) may not be a proper probability measure. It would
need to be o-additive, so P(l4;<, A; |Q) = 52, P(A;|G) for any countable
collection of pairwise disjoint sets {4, },eN C F. However, in general there
can be uncountably-many such {{4;},en}icr € F, each leaving us with a
potentially different null set V;, 7 € I, where (x) would not hold. Whether
Uier Ni € F and, if so, whether P(U;c; Vi) = 0 is unclear.

= |f(Q,F), (,F) are measurable spaces and X : 2 +— O is (F, F')-measurable,
then P* : F x Q +— [0,1] is a regular conditional probability measure given G if
i) VA € F, P*(4,-) is a version of P(A|G) (verbose: VA € F, the rv

w— P*(A,w) is a version of the rv w — P(A]|G)(w) satisfying i)-ii)); and
i) Yw € Q, P*(-,w) is a probability measure on (9, F).
Similarly, F' Xig :R% x Q> [0,1] is a regular conditional df of X given G if
i) Ve eRY, F ;(|g( -) is a version of P(X < x|G); and
i) Vw e Q, Fyg(+w) is a df.
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= One can show that if (Q, F') is nice (so if 3 a one-to-one ¢ : Q' — R? so that
@, " are measurable), then regular condititional probability measures and dfs
exist. In particular, (', F') = (R?, B(RY)), d > 1, is nice, which is the case in
most applications and which we assume moving forward, so we assume to work

with regular versions.

Lemma 8.6 (G being generated by a countable partition)
Let X € LY(Q, F,P). If A= {A,}nen is a partition of , let G = (A, n € N) =,
{Wier Ai - A € AVie I, I CN} Then

E(X
G, P(4,) >0,
0, P(A,) = 0.

Proof. Let ¥V := > ° | E4 (X)14, : © — R be a candiate for a version of
E(X |G). We verify the deflnmg properties i)—ii) of E(X | G).

Yoy, simple .
1) Yo 1= Xpii Ea, () Ta, 40 Ly e) G .=, Y =limneYn€g
=) V.

2) Preparation for ii): |Y| % Yot |Ea, (X)|1a, % Yoo Ea, (| X])1a4,, so

E(X|G) = ZE (X)) T4, where Eg (X) ::{
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B0Y) < B( 3 Ba (X)L, ) 5, Jim B( S Ea(X)L, )

n=1 n=1
N N
= lim 7B (IX)P(4,) = lim 3OE(X|14,)
n=1 n=1

— Jim E(Zlufuun) = Jdim E(X[Ly ) s E(X]) < .
n=

fin N—00
Therefore, VA € G, E(|Y14]|) < E(JY|) < o0, s0 Y14 € LY(Q, F,P).
3) AcG= A= Uie[ A; for some countable I C N. Then

2N E(Y1a,) = /YdIP’Y S /]EA
zGI i€l

icl
EZ/E‘ )14, dP ZE1 )/ 1y, dP
el iel Q
L-§5) Z \EAl(X)P ZE X]]'A ) L512 E(X]lA)
@M B(4;) > 0
- 1) (4
E{“Tﬁ p(ay = o [ S S5
) i) =
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Interpretation:

Conditional expectation. Consider an experiment with sample space {2 in
which an unknown outcome w has happened. We only know that w € A,
for some known n € N. Conditional on this information, our best predic-
tion for X is thus the mean of X over A, relative to the probability of A,
happening, so E(X | G)(w) = % = E4,(X). Therefore, E(X |G) =
Y1 Ea, (X)1a,.

Conditional probability. If X = 1 4, then

n=1 " n=1 n

A A >
L.5.35) Z m ]lAn:ZP(A‘An)ﬂAna

n=1 n=1

ie. P(A[G)(w) = P(A[An) (=0 if P(4,) = 0). In particular, if X has
support {x, }nen, then G = 0(X) = {X'(B) : B € B(RY)} = o(X =
Zn,n € N) =0(A,,n € N), where A,, = {X = x,} are pairwise disjoint, so

we obtain P(A | X) =372 | P(A| X = z,) 1 {x—p,)-
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Ia(0) =0

Continuity of T'+— 1,(T"), T' > 0, is clear. For a > 0, [14(T") — I,(0)|

T € [0,7/a]
sin(z) <

I1,(T) < fgadt = ol — 0. Similarly for & < 0. For a =0,

x>0

I,(T)=0,T >0, is clearly continuous.

Now consider lim7_, o Io(T). The case a = 0 is trivial. For o > 0, note that

aT roo aT'| g sin(@)<z [T
/ |sin(z)e”**|dzdx = / [sin@)] dz < dz = aT < oo,
0 0 é:fo e~ *%dz Jq z>0

x 0

so by Tonelli, [*7 [ sin(z)e ™% dz dz exists and Fubini implies that

ot sin(:c) aT ) 0 s
I(T) = / . dz ,,f L / sm(a:)/o e " dzdx
= / / sin( “drdz :f/ h(z)dz.
Fubini 0 de 0
We have

aoT
h(z) = [— cos(m)e_m]aTO - /O (—cos(x))(—z)e” ** dz

by parts T=

aT
=1 — cos(aT)e =T — z/ cos(xz)e ¥ dx
0

— . _ aT
byﬁnsl — cos(aT)e zal’ _ z([sm(x)e xz]x:o — (—z)h(z))
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=1—cos(aT)e **T — zsin(aT)e > — 22h(z)

and thus h(z) = L= (cos(aT)tzsin(@T)e™ T \\ripy I H% dz = [arctan(z)]oo =

1422 0
5, we obtain
L(T) = /00 1 — (cos(aT) + zs;n(aT))e*mT &
0 142
T /OO (cos(aT) + zsin(aT))e =T d
=—— z.
2 0 1+ 22
=:9(T, Z)

Since limy 00 (T, 2) =0V 2 >0, |g(T, 2)| < 1+ —— VT > 0 for some M >0

and 141:/122 is integrable, DOM implies that limy_,o [ g(T, 2) dz = [;°0dz =
0, so imy_y00 Io(T) = 5.

Finally, for o < 0, limyp 00 1o (7)) = - limp oo I-o(T) = -7

caseax > 0 2"
3) By 2), T — Li(T), T € [0,00), is continuous with a finite limit for T —
co. Hence suppcjg oo [11(T)| < 0o. Since Va € R and T > 0, we have
1o(T) 5 I (aT), we obtain that 1o (T)| = |Il(|a|T)] < SUPfe(p o) |11(T)|

STalr
< 00. O

before
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Proposition 8.7 (Properties of conditional expectation)
Let (2, F,P) be a probability space, H C G C F o-algebras and X,Y €
LY(Q, F,P).
1) E(X |{0,9Q}) =E(X) (no information)
2) If X is independent of G, then E(X |G) = E(X) (no relevant information).
3) If X is G-measurable, then E(X | G) = X (full information).

In particular, E(c|G) =cVceR.

4) E(aX +bY |G) =aE(X |G) +bE(Y |G) Va,b € R (linearity)

5) If X <Y, then E(X |G) <E(Y |G) (monotonicity).

6) [E(X |G)| <E(]X||G) (triangle ineq.; special case of “conditional Jensen")
)

EEX |H)|G) =E(X |H)=E(E(X |G)|H) (tower property or smoothing).
In particular, E(X) = E(E(X |G)) (law of total expectation).

7

In line with L. 8.6, P. 8.7 1) and 2), a coarser (finer) G averages over fewer (more)

events and thus more (less) averaging takes place, so E(X | G) retains less (more)

information of X, e.g. E(X |G) _ =, }E( ) (full averaging, no information about X

retained except mean) and IE(X | g) X (no averaging; full information retained).
: coarser o-algebra (Iecaét information) remains (smoothing).
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Proof.
1) E(X) is constant, thus {(7) }-measurable (see E. 3.3 1)). Furthermore,

JHEX)P = 0 = [,XdPand [,E(X)dP = E(E(X)) = E(X) =
fQXd]P’
2) E is constant, thus G-measurable (by E. 3.3 1)). Furthermore,

/ E(X)dP = E(X)P(A) = E(X)E(11) = E(X14) = /A XdP, VA €G.

.5.35)

3) X € G by assumption. Furthermore, [, XdP = [, XdP VA € G, so
E(X |G) = X. In particular, the rv ¢ is G-measurable, so E(c|G) = c.

4) By definition, E(X |G), E(Y | G) are G-measurable, so aE(X |G) + bE(Y | G)
is. Furthermore, VA € G,

/a]E(X\Q)+bIE(Y\Q)dP;a/E(X]g)dIP’er/ E(Y|G)dP
A

= /XdIP’+b/YdIF’Im/aX+bYdIP’
so E(aX +bY |G) = aE(X |G) + DE(Y | G).
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5) VAc g, [{E(X|G)dP = fAXdIP’<fAYd]P> JLE(Y|G)dP, so

mon.

E(X|G) — (Y|g)dIP’(§)O.
Ve>0, A .= {E(X |G) —E(Y|G) > ¢} is the preimage of [¢,00) under a
G-measurable function, hence A, € G. Furthermore,

o>/ IEX|Q)—IE(Y|Q)d]P2/ cdP = <P(A.),

mon. J A

so P(A;) (—) 0Ve > 0. Therefore, P(E(X |G) > E(Y |G)) = P(UpZ; A1) <
Yo P(Ay ) 5 0, hence E(X]g) <E(Y|G).
6) \E(Xlg)\—!E(X+ X7[G)| = [E(XT|G) —E(X™|9)|
< EXTG)+[EX (9] ZURE(XTG) +E(XT ()
—E(X++X 19) = (\XHQ)
7) E(X |H)is 7—[ "measurable o E(X | H) is G-measurable = E(E(X | H) | G) 5
E(X |H), which verifies the flrst equality. For the second, we have VA €
H C G that [LE(E(X|G)|H)dP "Z* [JE(X|G)dP =" [, XdP "=
[ E(X | H) dP.
In particular, E(X) 5 E(X [{0,Q}) = EEX|G)] {0,Q}) 5 E(E(X |G)).

L]
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Similar to the unconditional case, we can also define || X | G|, := E(|X|7[G)"/?,

p € (0,00], typically p € [1,00]. One can then obtain the following inequalities.

Lemma 8.8 (Inequalities)

1) Vp,g € [1,00] : 5+ 2 =1, we have [ XY |G|y < [ X |G|, - [[Y|Gllq (condi-
tional Holder's inequality); for p = q = 2, we obtain the conditional Cauchy—
Schwarz inequality .

2) IX +Y[Gll, < IX[Gll, + IV [Gll, VX, Y € L?, p € [1,00] (conditional
Minkowski's inequality)

3) VX, p(X) € L', ¢ convex (concave), p(E(X | G)) < E(p(X)|G) (¢(E(X |G))
> E(e(X)|G)) (conditional Jensen's inequality (cJensen))

Proof. Similarly to the proofs of the respective unconditional inequalities. O

Proposition 8.9 (Contraction in L” and continuity property)
1) If X € LP(Q, F,P), p € [1,00), then |[E(X |G)|, < [|X||p.
2) If X, 5 X, then B(X,|G) = E(X|G).

Proof.
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1)
2)

exp.

IE(X1G) ~E(X )l = IEXn ~ X |Gl < 1X0 Xl 3 0. O

IECX |9)ll, = E(E(X |G)P)> < E(E(X]P|G)7 Z E(X])» = | X,

With slightly stronger assumptions (and here on probability spaces), we get condi-

tional versions of already presented convergence theorems.

Theorem 8.10 (Conditional versions of convergence results)

1) If (Xn)neny € Ly are integrable and X,, /* X pointwise, then X € Ly is
integrable and E(X,, | G) . E(X | G) a.s. (conditional monotone convergence
theorem (cMON)). e

2) If (Xy)nen C Ly are integrable, then E(hnnllo%f Xn|G) < hnlgiong(XM Gg)as
(conditional Fatou's lemma (cFatou)).

3) If X, 3 X, | X, <YVn€NforY€L1 then (X,,) C L', X € L! and
hmn_>oo (X |G) = E(X |G) (conditional dominated convergence theorem
(cDOM)).

Proof.
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1) By monotonicity, E(X, |g) pointwise = Let YV := lim, . E(X,|G)
pointwise. By L. 3.122), Y |s g measurable. Furthermore, VA € G,

/YdP: lim E(X,|G)dP = hm/EX\gd]P:hm X, dP
A

def. A n—oo def. n—

= X dP.

MON A
By definition of cond. exp. we thus have E(X |G) =Y = limp o E(X,|9).
Note: By L. 8.3, Y € L! and so is X, hence E(X|G) is well-defined.
2) Similarly as in L. 5.15, let V), :=inf;,~, X, n € N. Then 0 <Y, < X,,
n €N, so (Y,)nen C L4 are integrable, too. Furthermore, Y,,  pointwise,
so Y :=lim, ., Y, exists pointwise and we have, pointwise,

Y, 'Y = hm Y, = lim inf X;, = liminf X,.

n—oo k>n analysis  1,—00
Therefore,
E(lilginf X, |G)=E(|9) o hm E(Y,, |G) = 1111_1)11& E(Y,1G)

— hmlnfE(m[ X |1G) < liminf E(X,, |G).
n— mon.  M—00

def. Y,

Note: We cannot work with lim as it is unclear whether lim E(X),, | G) exists.
n—00 n— o0
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3) The first parts of the statement follow directly from DOM. We have left to
show that lim,, 0o E(X,, |G) = E(X |G). Since

[E(X5]G) —E(X|9)] = [E(Xn = X |9)] < E(|X, - X|]G)
< E(sup|Xk - X|19),

it suffices to show that lim E(Z,|G) = 0 for Z,, := supy>,, | Xr — X|, n € N.
n oo -
" By ass., Z, :—S> 0. And we have that
0< Zy <sup|Xp|+|X|SY+Y=2YelL', VneN.
A peN ass.
By DOM, limy_,o E(Z,) = E(0) = 0.

" 0<E(Z,|9)\ = Z:=1lim, o E(Z,|G) exists and is a rv by L. 3.12 2).
= Since 0 < Z <E(Z,]| G)L€83L1 Vn € N, we have that Z € L' and thus

0 < E(Z) < E(E(Z,|G)) = E(Zy) — 0.

mon. mon. n—00

Therefore, lim E(Z,|G) = Z = 0. O
n—oo def.
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Proposition 8.11 (Independence from a c-algebra)
Let (2, F,P) be a probability space, G, C F o-algebras and X € L'(Q, F,P).
If H is independent of o(c(X),G), then E(X |o(G,H)) =E(X|G).

Proof.

By linearity, we can assume wlog X HZS 0. Let Y be a version of (X |G). Then
Y is G-measurable and Y > 0.

By L. 5.86), /(A) :==E(Y1,4) and v(A) := E(X1,) are measures on (€2, F).
Since 11(Q) = v(Q) = E(X) < oo, they are finite, thus o-finite.
VGeg, HeH,

WG N H) =EYlgnu) =E(V1cly) = E(Y1g)E(ly) = E(Y1)P(H)

Hind.of G simple

Y:]EéX\Q) E(X]]_G)]P)(H) similarIyEckwards E(X]]_GOH) _ I/(G ﬂ H)

Geg using'H,ind.(?o‘(rr:.\ ), G)
Therefore, p, v are o-finite measures that coincide on the m-system {GNH : G €
G, HecH} ,=5, M- v coincide on c{GNH:GeG,HeH}) =, o(G,H).

L.21

We have thus verified that Y = E(X | G) is a version of E(X |o(G,H)), hence
E(X|G) =E(X|0o(G,H)) as. O
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= For G = {(), 2} we obtain that if / is independent of o(c(X),G) = o(c(X)) =
o(X), then E(X |H) = E(X |0(G,H)) = E(X|G) b5y E(X), which we
already know from P. 8.7 2).

= We already mentioned that E(X | G) is often found by a guess and verification
of the defining properties i)—ii). The following result can simplify the verification
of the defining properties of conditional expectation.

Lemma 8.12 (Generator)

Let (Q2, F,P) be a probability space, G C F a o-algebraon Q and X € L'(Q, F,P).
If A C Fisamsystem such that o(A) = G and 3 (A;);en © Awith [J72) A; = O,
then any Y : 2 — R such that

i) Y eg, and

i) EY14)=E(X14)VAE€A,

is a version of E(X | G).

Proof.

" E(|X14]) < E(JX|) < oo VA € F = X1, is integrable VA € F, in

particular VA € A C F. By ii), Y14 is thus integrable VA € A.
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® By integrability of X1 4, Y14 VA € A, we have that
E(Y14) =E(X1y) VAecA
SE(YT14) ~E(Y 14) =E(X'14) ~E(X 14) VA€ A

S u(A) =E((YT+X 7 )1a) =EY 1) +E(X 14)

lin.

=EXT14)+EY 14)=E(XT 4+ Y )14) =v(A) VAc A

= By L. 5.8 6) and since Y % G, we know that y, v are measures on G. By
|4 = v|.4 and integrability of X, Y, thus X T, X~ YT Y~ on ACo(A) =G,
we obtain p(A;) = v(4;) oi::tb;:t: oo Vi € N, where, by ass., (4;)iey C A
with U2 A; = Q. Hence ji, v are o-finite measures on G with p| 4 = v| 4.

» We thus obtain that plg = i) = V|sa) = Vlg, which implies D. 8.2 ii)

P.2.28
and thus concludes the proof. O

If X € G, we already know that E(X |[G) = X = X -1 a'::) XE(1|G). The

P.8.73) P.8.7
following is a generalization.
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Proposition 8.13 (Taking out what is known (TOWIK); product rule)
If XY and Y are integrable and Y € G, then E(XY |G) = YE(X | G).

Proof. YE(X |G) E G. We have left to show that [, YE(X |G)dP = [, XV dP

VAedg. We apply the standard argument to Y.

1) Y =1p, Beg= [1sE(X|G)dP = [,z E(X[G)dP "2 [, , X dP
= [, 1pX dP. By linearity, the argument holds for all simple Y

2) X,)Y >0 =, 3 3 simple (Y,)nen sit. ¥, Y. Then, VA € G, we have
Y, E(X|g)]lA S YE(X |G)14 and XY, 14 7 XY 14 pointwise, so that

/Y]E X|G)dP = lim /YEX]g)dIPS'"""e ] /XY dP = /XYdIP’
3) For general X,Y, use X =XT X", Y=Y"-Y", I|near|ty and 2. O

Corollary 8.14 (Independence)
If X,Y, XY are integrable and Y € F is independent of o(c(X),G), then

E(XY [G) = E(Y)E(X|G).
Proof. E(XY |G) "= E(E(XY |o(c(X),6))|G) =

GCo(o(X),9)

E(XE(Y |o(0(X).6))|9)
o E(Y)E(X|G). E(Y) O
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Theorem 8.15 (Factorisation, Doob-Dynkin lemma)

For Q # 0, let (2, F,P) be a probability space, (€, F') a measurable space and
Z:Q— Q. ThenY :Q — Ris (0(Z), B(R))-measurable iff 3 a (F/, B(R))-
measurable h : ' — R such that Y = h(Z).

Proof.

“<": Zis (6(Z),F')-measurable, h is (F', B(R))-measurable =7
=": Let Y be (¢(Z), B(R))-measurable. We apply the standard argument.
1) fY =30 yila, for n € Nand {4;}", Co(Z) then 4; = Z71(4))
for A7 € F', i = 1,...,n. Therefore, Y(w) = 3L yila (w) =
Syl g (W) = X il a (Z(w)) = h(Z(w)) for the (F', B(R))-
measurable h(z) = 3211, yila/(2).
2) Y >0 =, Isimple (Ya)nen sit. ¥, /Y = 3 (F', B(R))-measurable
(hn)neN Yn = hp(Z). The claim follows with h(z) := sup,en hn(2) =
limy, 00 hn(2), which is (F', B(R))-measurable by L. 3.12 1) or 2).
3) General Y =3 (F, B(R))-measurable h* h~ st. Y* =ht(2), Y~ =
h=(Z). So V= h(Z) for the (]—"’,B(i))—measurable h:=ht—h". O
E(X|Z = 2):=h(z) is the ; often ) =R?
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Alternatively, and specifically for E(X | Z) = h(Z), one can argue as follows.

Theorem 8.16 (Factorisation, Doob-Dynkin lemma for cond. expectations)
For X € L'(Q,F,P) and a d-dimensional random vector Z, there exists a
measurable h : R? — R such that E(X | Z) = h(Z).

Proof.

Wilog assume X > 0; otherwise consider X —, X . Then E(X) = E(]X]) < .
By L. 5.86), v(B) := [z-15 X dP, B € B(R%), is a measure. Furthermore,
v(RY) = [ X dP = E(X) < oo, so v is a finite measure on R%. And VP z-null
sets N, we have P(Z71(N)) =Pz(N)=0 = v(N)=0= v < Pz.

L.5.116)
RN = 3 a Pz-a.s. unique integrable h : R — [0, 00) such that

/ X AP = / h(z) dPy (2 521/ h(Z) dP VB e B(RY). (9)
As an mtegrable function, h is measurable by deﬁmtlon, so VB € B(R), we
have (h(Z))"Y(B) = ZY(h"Y(B)) , € Z YB(RY) = o(Z) and thus

h™*(B)eB(R?)

hZ) € o(Z), so h(Z) is 0(Z)-measurable and thus D. 8.2 i) holds.
By (9), h(Z) fulfills D. 8.2 ii), so E(X | Z) =E(X|o(Z))=h(Z)as. O
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Factorisation is often applied to X = ¢(X, Z) where X, Z are independent.

Theorem 8.17 (Factorisation under independence)

If X, Z are independent d,- and d-dimensional random vectors, ¢ : R%+d= R
a measurable function such that g(X,Z) € Ly or g(X,Z) € L}, and h(z) =
E(g(X,z)), then E(9(X,Z)| Z) = h(Z) as.

Proof. We check the two defining properties of E(g(X, Z) | Z) for h(Z):
i) By def., integrable functions are measurable, so (h(Z))~'(B) = Z=1(h~Y(B))
Z Y (B(R%)) = 0(Z) ¥ B € B(R). Therefore h(Z) € o(Z).

hTH(B)EB[RZ)

ii) Consider A € 0(Z), that is A = Z~!(B) for some B € B(R%). Note
that 14(w) = 15(Z(w)) Vw € Q. If g(X,Z) € Ly (9(X,Z) < L"), apply
Tonelli's (Fubini’s) theorem to see that

/g(X,Z)d]P’z/g(X,Z)]lAd]P:/g(X,Z)]lB(Z)d]P’
A Q Q

= g(xz,2)lp(z)dFx z(x, z)

T.;21 Rdz+dz
Tonelli/Fubini
= g(x,z)1p(z)dFx(x)dFz(z)
ind. Rdz JRdz
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lin.

— [ 1p(=)h(=)dFg(z) = / 15(2)h(Z) dP
Rd= 521 Jq

:/Q]lAh(Z)dIP’:/Ah(Z)dIP. O

= Factorisation under independence allows us to calculate E(g(X, Z) | Z) by first
calculating h(z) = E(g(X, z)) (treating Z as if Z = z) and then returning
h(Z); see P. 8.21 for an application.

= Note: E(g(X,Z)|Z) is a rv, whereas E(¢(X,Z) | Z = z) = h(z) is a value.

B |n statistics,
E(9(X,2)|Z = z)

is known as the regression function of g(X,Z) on Z at z. If g(X,Z) € L?, it
is the best L?-approximation of g(X, Z) given one has observed Z = z (see
later).
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8.3 Applications

We now present various applications of conditional expectations. We start with
(regular) conditional dfs.

Corollary 8.18 (Central conditional distribution formula)
If (X,Z) ~ F for a (dg + d)-dimensional df F' then

F(mv Z) = /(_Oo 4 Fx‘z(m | 2) sz(i), (:1:, Z) & Ré%td= (10)

Proof. With 1(2) = E(lix<z} | Z = 2) =P(X < z|Z = 2) =

= Fx|z(z|2),

we have

tot.

F(z,z) = E(l{x <o z2<2)) = E(l{x<a} L{z<2)) 5 B2(Ex(Lix<a) (222 [ Z))
TOWIK EZ(H{ZSZ}EX(]I{XST} 12)) . EZ(H{ZSZ}}I(Z))
chage of H{ggz}h(i) dFZ(g) = / ]7(2) dFZ(i)

variables Rdz (—OO,Z]
- Fyz(@| 2) dFz(3). -
shown (—OO,Z]
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Important special cases:

1) If F has continuous second partial derivatives, then F'(x, z) = [_ ., Fx|z (]
Z)[z(z)dz, so F has density

2
Fl@2) = 5oeF(2) 27 L iy 2)fa(2) = sl 2)fal2),

Lelbnlz dm
for fx|z(z|2) = %FX|Z($ |z). For fz(z) > 0, we can thus recover the
classical
i , flx, z)
Tlz)="— 11
fx|z(x|z) F2(2) (11)
and
f) ~ see » ~ ~
Fx|z(z| Z)f“nd’:thm’/(—oo,m] 9zl x1z(@]2)d® = /(—oo,m] Ixz(@]z)dz.

(12)

= Similarly for pmfs f, where (11) holds for pmfs and (12) in terms of sums.

= (11) resembles “P(A| B) = P(‘?m?)” but in general fz(z) #P(Z= )abs 0.

Ifx|z(x|z) X%)ind % = fx (), which aligns with intuition.
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2) If X has pmf fx and Fz has density fz, then, Va € supp(fx) = {x € R% :
fx(aj) > 0},
PX=aZ<z)=F(x,z)— Flz—, 2)

P(X = x| Z = 2) fz(2)dz. (13)

Defining f(x, z) := %P(X =x,Z < z)and fx|z(z|2) = P(X=x|Z==2),
we (again) obtain that

Op(X —a,Zz<2) D PX =a|Z = 2)fz(2)

d}. az Leibniz

= fx|z(z|z)fz(z), (14)

def.

[z, 2)

which generalizes (11) for conditional densities to discrete X and absolutely
continuous Z. This case is needed in Bayesian statistics when the parameter is
continuously distributed but the distribution considered is discrete (e.g. consider
uncountable mixtures of discrete dfs).
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3) By taking the limit z — oo, we obtain from (10) the margin

Fx(z) = lim F(z,2) /Rdz Fxiz(z|2)dFz(z), zeR&  (15)

Z—00

® If F'x|z has integrable derivative, then F'x has density

: d o,
fx(@) =~ Fx() = / fxiz(@|2)dFy(z), xeR%™.  (16)
eibniz Rdz
Furthermore, if F'z has density fz, then

N /]Rdz fxiz(@|2)fz(z)dz, = eR™. (17)

Similarly for pmfs fx.
= |f Fz has density [z, then

Fx(x 15)/ FX|z(iB!z)fZ z)dz, = c R (18)

® If Fz has pmf fz, then Fx(x) = Yocesupp(f) Fx1z(®|2)f2(2), T € R,
so we can recover the law of total probability

PX<z)= > PX<z|Z=2PZ-=-=2).

zesu
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Example 8.19
= Applied to G = 0(Z), the law of total expectation says that for a rv X with
E(]X]) < oo, one has

E(X) = E(E(X | Z)).

= With the formulas we just derived, we can also prove this in case (X, Z) has a
density (or pmf) fx z via

EX) = [afx@do o [o]  fuzlel2)fz(z)dzda

(17) \
= Lo [t e ot 0z
Rdz JR
= | E(X|Z=2z)fz(z)dz
def. Rdz
=E(E(X|X = 2).—z)
=E(E(X|Z2)).
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Proposition 8.20 (Law of total variance)
Let (2, F,P) be a probability space, G C F a o-algebra. If X € L?*(Q, F,P),
then var(X) = E(var(X | G)) + var(E(X | G)) (law of total variance).
Proof. We have
var(XG) = E((X —E(X[9))*|G) "V B(X? - 2XE(X | G) + (E(X | §))*| 9)
_ E(X?|G) - 2E(XE(X|0)|G) +E((E(X|9))?|9)
= E(X?|G) - 2E(X [G)E(X|G) + (E(X |G))*-1

2x TOWIK

=E(X?|G) — (E(X|G))?

and thus
var(X) = E(X?) — (IE(X))2 2::? E(E(X?[G)) - (E(E(X|g)))2
2 E(var(X |9) + xwfﬂ (EE(xX|9))”
= E(var(X | G)) + E(E(X | G)%) — (E(E(X | Q) )’
=E(var(X |G)) + ch( (X1G)) O

For G = 0(Z), var(X) = E(var(X | Z)) is generally wrong as it does not take

into account the variance of Z itself.
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Proposition 8.21 (Random sums)
Let N, X1, Xo,

be independent, N € Ny a.s., (X;);ey iid and S = >V,
) If N,X; € L!, then E(S) = E(N)E(X;).
2) If N, X; € L?, then var(S) = E(N) var(X;) + var(N)(E(X1))
Proof.
1) i) If X; >0, apply T. 8.17 with g(X,N) = XY, X; € L. Then h(n)
E(g(X,n)) = E(CiL, Xi) = Y E(Xy), so that, as
E(XCL Xi| N) =E(9(X,N)| N

E(S|N) =
) T_:_” h(N) = L E(X;) 5 NE(X).
Therefore, (S )“’t E(E(S|N)) = E(NE(X 1)) = E(N)E(X1)
i) General Xp: S = val(Xj— ) SN X =N X7 =8t -5-
jE(S), E(ST) —E(S7) = ( JE(X7") — (N)E(XJ)EE(N)E(Xl)-
2) var($) = E(var(S | N))+var(E(S| N)) = B(Y Y var(X; | N))+var(E(S| N))
P,';%Z)E( iLy var(X;)) + var(E(S | N)) =
E(N)var(X;) + var(NE(X;)) =

E(Nvar(Xy)) + var(E(S | N)) =

E(N) var(X1) + var(N)(E(X1))?
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Question: What is the best L?-approximation to a rv X by a G-measurable rv?

Recall: Since
E((X —¢)?) = E((X— E(X) + E(X) — ¢)?)
" ar(X) + 2E((X — E(X))(E(X) — o)) + (E(X) — o)

= var(X) + 0+ (E(X) — ¢)?,

lin.

we know that E(X) is the best L?-approximation to X by a constant.

Answer: If X € L*(Q,F,P), it is E(X |G) (= interpretation in this case).

Proposition 8.22 (Conditional expectation as best L?-approximation)
Let (2, F,P) be a probability space, G C F a o-algebra and X € L*(Q), F,P).
Then E(X |G) is the Y € L?(Q2, G, P) which minimizes E((X — Y)?), that is
E(X -Y)) = inf E(X-2)% iff VEEX|G).
(X=YP)=_inf E(X-2)) i (X19)
Proof. Multiplying out and using linearity,
E((X - Y)?) =E((X-E(X|G) +E(X |G) - Y)?)
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= E((X-EX[G)?) +2E((X ~E(X | G))(E(X |G)-Y))+E((E(X |G)-Y)?).

The first summand does not depend on Y, the third summand is minimal iff
Y = E(X|G), and any such Y is G-measurable and in L? by P. 8.9 1) since

X € L2. We are thus done if we can show that the second summand is 0:
IE((X —E(X|G)(E(X|G)—Y))
= E(E(X -E(X|G)(E(X[G) ~Y)|G))

( (X1G) - YV)E((X — E(X|g))\g))
= E(EX]9) - Y)(E(X|9) - E(E(X][G)]9)))
l"%";E<<E<X\g>—Y>(E<X|g> <X|g>)) 0. =

Remark 8.23 (Interpretation via orthogonal projections)

= [2(Q, F,P) is a Hilbert space with inner product (X,Y) := E(XY) and
L?(92,G,P) is a closed subspace.

= The point Y € L?(Q,G,P) closest to X € L%(Q, F,P) is known as orthogonal
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projection of X onto L*(€),G,IP) and is given by

arginf E((X —Y)?) o E(X|G).
YeL2(0,0,P)

m Sketch: X L2(Q, FP)

Indeed,
(V.Y — X) = E(E(X |G) - (E(X | ) - X)) "2 B(E(X | 6)° - XE(X |G))
= B(E(X|G)?) — E(XE(X|G))
::p'_ E(E(X |6)?) - E(E(XE(X | 6)|0))
E(E(X |G)?) — E(E(X |G) - E(X|G)) =
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