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Course information
Contact, times, locations

Instructor:  HOFERT Marius (mhofert@hku.hk)
Lectures: Mon 09:30-12:20, in MWC T7

Office hours: on appointment, via Zoom:
https://hku.zoom.us/j/98597702554

Questions:  Best asked during the lecture breaks, after the lectures and during
the office hours. Emails to the instructor will only be answered if
they concern personal circumstances or emergency cases.

TA(s): YAO Gan (ganyao@connect . hku.hk; responsible for tutorials (start-
ing in second week of classes) and grading assignments)

Representative: Any volunteer?

Course objectives
® Introduction to measure theory and probability
®  Basic concepts in theoretical probability

= For students interested in research (in AS, STAT, probability)
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Mathematical proofs and the underlying ideas

References

It is recommended to study from the course material rather than additional sources.

The course material is compiled from various sources, including:

Achim Klenke, “Probability Theory: A comprehensive course”, 2008;
René Schilling, “Measures, integrals and martingales”, 2006;

Heinz Bauer, “Measure and Integration Theory", 2001;

Gerald B. Folland, “Real Analysis: Modern Techniques and Their Applications”,
1999;

Rick Durrett, “Probability: Theory and Examples”, edition 5, 2019;
Sidney I. Resnick, “A Probability Path”, 2014;

Allan Gut, “Probability: A Graduate Course”, 2005;

David Williams, “Probability with Martingales”, 1991;

Patrick Billingsley, “Probability and Measure”, 1995;

Jean Jacod, Philip Protter, “Probability Essentials”, 2003;
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Richard L. Wheeden, Antoni Zygmund, “Measure and Integral”, 1977.

Teaching and assessment

2025-02-24: No lecture

Course-relevant material is shared on Moodle (https://moodle.hku.hk/
course/view.php?id=122012).

Assessment:

» 3 assignments (each 5%): to be handed in as Moodle Assignment (single
file) before the tutorial on the due date (late hand-ins are marked as 0)

» 1 midterm (25%): March 17, 2025, 09:30-10:20, MWC T7 (lecture there-
after)

» 1 2h final (60%): t.b.a. in course outline once available (=~ mid term)

Absence from assessments: See course outline. Avoid missing the final.

See course outline for additional details, e.g. rules for regrading requests.

Absence from assessments

See course outline.
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General advice

Come to every class (even if you cannot follow much). Fill gaps in follow-up
course work.

Perform follow-up course work (after each lecture) to learn the material contin-
uously throughout the term. For a proper learning effect and to prepare you for
the exams, you should write by hand (definitions, main results, formulas, doing
the examples and exercises again, etc.), so writing your own summary notes is
advisable.

Try every assignment question on your own first before collaborating with others.
If you cannot solve them in a reasonable amount of time, discuss ideas with
others. As in exams, the final write-up to be handed in must be your own.
Try your best to avoid getting ill before your finals. It is highly recommended
to participate in final exams, as supplementary finals are more difficult due to
the longer preparation time, which would otherwise be unfair towards all other
students.

Regularly check your university email (especially before exams, lectures in bad
weather).
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FAQ

Is there a single book for this course we follow?

No (as all have their drawbacks and the lecture material is compiled from various

sources).

Can | have more space on the slides?

In IATEX:

\documentclass{article}

\usepackage{pdfpages}

\begin{document}

\includepdf [pages={1-}, scale=0.75, offset=0 180]1{mySlides.pdf}/ see https://mirror-hk.koddos.net/CTAN/macros/
latez/contrib/pdfpages/pdfpages.pdf for the arguments; play with 'offset' to put slides in the location

you want
\end{document}

What will the exam(s) look like?

Closed book. A mix of “Show...”, “Calculate...”, “Provide a definition of...",
“Explain in words why...", etc. Important is to justify your answers (give reasons
for your answers; providing an answer without derivation or without stating
assumptions will only give a minor fraction of the marks).

How can | get more practice?
You can. ..

© Marius Hofert Course outline and tips



>
>
>
>
>

rework the course slides (definitions, statements, examples);

change the distributions in the examples and redo them;

redo the assignment and tutorial problems (also with different numbers);
team up with a colleague and pass each other (modified) questions; and
google the topics you struggle with to find more exercises.

" Do | need to be able to replicate all the proofs?

Proofs are an essential part of mathematical learning and are covered to explain

why statements are correct, so they help us learn and understand. Important

arguments and rough ideas (for longer proofs) may appear or be asked for, but

longer proofs do not need to be replicated precisely.
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1 Introduction
1.1 History

1.2 Basics of set theory
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1.1 History

= |ntuitively, we understand the concept of probability (a number in [0, 1] reflecting
the chance that a random event happens) and that is important for modelling
future events (gambling, weather, life insurance, success of a new drug).
®  Early references include:
» Fair value of an insurance contract, e.g. against crop failure (Code of
Hammurabi from Babylon; legal text from 1754 BCE):
“A farmer who has a mortgage on his property is required to make
annual interest payments in the form of grain. However, in the event
of a crop failure, this farmer has the right not to pay anything, and
the creditor has no alternative but to forgive the interest due.”
This essentially describes a put option (right but not the obligation of the
holder [here: farmer] to sell [here: not to pay interest in the form of crop]
the underlying asset [here: crop| at a specific price).
» Gerolamo Cardano (1501-1576, “Book on Games of Chance” (on gambling;
written / 1564; considered throwing dice to understand basic probabilities;

considered the ratio of favourable to unfavourable outcomes as probabilities)
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» Galileo Galilei (1564-1642) observed that some numbers in {2,...,12}
appear more often as sum when throwing two dice since there are more ways
to create them.

» Blaise Pascal (1623-1662) and Pierre de Fermat (1607-1665) exchanged
letters to solve gambling “paradoxes”, commonly viewed as the birth of
probability theory.

— Antoine Gombaud (as self-styled Chevalier de Méré) considered two
games (Chevalier de Méré paradox):
1) Roll a fair die 4x and note whether at least one 6 occurs.
2) Roll two fair dice 24x and note whether at least one double 6 occurs.
He believed the chance of the two games to be the same (they are
1—(1-1/6)*~0.5177 and 1 — (1 — 1/36)%* ~ 0.4914, respectively).
— Pascal and Fermat spotted that Gombaud believed that the probability
of success in n throws is n times that of a single throw; e.g. in Game 1
Gombaud thought that since the probability of success in one throw is
1/6, the probability of rolling at least one 6 in four throws is 4/6 = 2/3.

» Christiaan Huygens (1629-1695) wrote a book about the ideas of Pascal
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and Fermat.

» Jacob Bernoulli (1655-1705) pointed out the necessity to develop a theory
to answer interesting probability problems he proposed in 1685.

» More and more mathematicians worked on probability problems: Abraham de
Moivre (1667-1754), Daniel Bernoulli (1700-1782), Leonhard Euler (1707-
1783), Carl Friedrich Gauss (1777-1855), Pierre-Simon Laplace (1749-1827).

» Andrey Nikolaevich Kolmogorov (1903-1987) saw the usefulness of measure
theory in properly establishing a modern theory of probability in his book
“Grundbegriffe der Wahrscheinlichkeitsrechnung” in 1933. Measure theory is
indispensable for studying probability theory.

» Paul Lévy (1886—1971) worked on stochastic processes, characteristic func-
tions and limit theorems.

= Today we think of probability as a mathematical theory for modelling random
events.

= Random events are described through sets. We thus first need to learn about
basic set theory and families of sets with certain properties. We can then define
probabilities on such families of sets in a consistent (non-contradicting) way.
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1.2 Basics of set theory

= Under a collection we understand several objects (elements) grouped together.
= |nitially, a “set” was believed to be an arbitrary collection of objects, its elements.

»  Russell’s paradox (1901) showed that every set theory that allows unrestricted
comprehension (i.e. that for any well-defined property we can construct a “set”
containing the elements with that property) leads to contradictions since such
a general “set” can be an element of itself, e.g. {A:|A| > 1} is a “set” which
contains itself (e.g. {e,71} € A:={ACR:|A]|>1} = Ac A).

® Russell considered the “set” 17 := {A : A ¢ A} of all “sets” that are not
elements of themselves. If R ¢ R, then R € R. And if R € R, then R ¢ R.
So Re R< R¢ R /. A more colloquial expression of this problem is: “This
statement is false.”

Barber paradox: Suppose a barber shaves precisely those men who do not
shave themselves, does the barber shave himself?
» If yes, then he shaves himself, so the barber (he) does not shave himself #.

» If no, then he doesn't shave himself, so the barber (he) shaves himself £.
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= Ernst Zermelo (1871-1953), with later additions by Abraham Fraenkel (1891—
1965), developed a system of axioms in order to formulate a set theory free
of paradoxes, the Zermelo—Fraenkel (ZF) set theory; it does not allow for the
existence of a universal set (a set containing all sets; this often leads to problems)
nor for unrestricted comprehension (so it also avoids Russell's paradox). With
the axiom of choice (i.e. for any collection of non-empty sets A there is a choice
function f such that f(A) € A for all A € A; or: the Cartesian product of a
collection of non-empty sets is non-empty), ZF is abbreviated ZFC. We assume
to work with ZFC.

= A set is a collection of objects (elements) that satisfy the ZFC axioms.

Let Q # (. Ais a subset of Q (A C Q) or Q is a superset of A (Q D A), if
weEA=weQVweA And A=QifACQand Q C A.

P(Q) :={A: A CQ} is the power set of Q, i.e. the set of all subsets of (2
(including 0, 9). If |Q| < oo, one can show by induction that |P(Q)| = 2/,
For I CR, a family {A;}ier € P() of sets is a collection of subsets of a set
Q. In contrast to a set of sets, a family of sets can contain repeated copies of

its elements.
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® Basic set operations:

Complementation:

Intersection:

Union:

Set difference:

© Marius Hofert

If ACQ, then A°:={weN:w¢ A}l
We have (A°)¢ = A, 0c=Q, Q° = 0.
If A; CQ, 1€ 1, then
(NAi={weQ:we A Viel}
el
The family {A4;}icr is pairwise disjoint (or mutually ex-
clusive) if A;, N A, = 0 Viy,ig € I : 41 # is. Inter-
sections satisfy AN B = BN A (commutativity) and
(ANB)NC = AN (BNCQC) (associativity).
If A; CQ, €1, then
UAi::{weS):EliGI:wEAi}.
i€l
If the family {4;};cs is pairwise disjoint, one often writes
;1 Ai. Unions satisfy AU B = BU A (commutativity)
and (AUB)UC = AU (BUQ) (associativity).
If A,B C (, then A\B := AN B¢ We thus have A¢ =
O\A.
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® |dentities involving more than one set operation:
Distributivity: ANU;er Ai = User(ANA;) and AUNcr Ai = Nier(AUA;)
De Morgan's laws: (U;er Ai)¢ = Nier AS and (MN;er A4i)¢ = User AS

= Limits of sequences of sets:

Infimum: infr>n Ak = Mp>n Ak

Supremum:  Supgs, Ag = Uk>n Ay,

Limit inferior: lin_l}inf An=Un2y ﬂk>n Ak - SUPp>1 infy>, Ak
n oo

Limit superior: lim sup A, = ﬂn 1 Uk>n Ak = infp>1 supy>, Ag
Limit: If hmlann = limsup A4, =: A, A is the /imit of A, for

n—oo
n — oo and we write A = lim A, or A, — A.
n—oo

n — oo

= Monotone sequences of sets:
{An}nen is increasing (An, ) if Ay C As C
{An}nen is decreasing (An ) if A1 D Ay D
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Lemma 1.1 (Interpretation limit inferior, limit superior of sets)
1) lim inf Ay, ={w e Q:we A, for all but finitely many n} =: {w € A,, abfm}
2) limsup 4,, = {w € Q: w € A, for infinitely many n} =: {w € A,, io}

n—oo
Proof.
1) We have
lim inf A, = U N 4
n=1k>n
={weN:IneN:we A, Vk>n}
={w e Q:we A, for all but finitely many n}.
2) We have
limsupAnﬁ ﬂ U Ap
n—roo - n=1k>n
={weQ:VneNIk>n:we A}
={w € Q:w e A, for infinitely many n}. O
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Lemma 1.2 (Properties of limit inferior, limit superior of sets)
We have

1) hm 1nf Ay, Climsup A,.

n—oo

2) (llnrggéf Ap)¢ = limsup AS.

n—oo
Proof.
1) hm 1nf A, ={w € A, abfm} C {w € A,, io} = limsup A,.
n—oo
2) We have (hmlan )¢ = (Unza Niesn Ar)° = ﬂn:l(mk’Zn Ak)c =
(Uk>n ) = hm 1 SUp AS. O

Lemma 1.3 (Monotone sequences of sets)

1) If A, 7, then nh_)lgo A, exists and n11_>rrolo An = Urey Ag. Similarly, if A, N\,
then nl;ngo A,, exists and nlglgo Ap = N2y Ak

2) For all {An}nen € P(Q), liminf Ay, = lim (infy>, Ax) and limsup A, =

. n—oo
Jim (supy>, Ag).
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Proof.

1) lim sup A, = M Uizn Ak € UiZs Ar =, Uil N2 A 7 liminf A, C

L.121)
limsup 4,, so that lim A, exists and lim A, = UpZ; Ax. Similarly for
n—oo n—oo

n—0o0
An \
2) For{A,}nen CP(Q), linnl)icgf Ap = UpZi Nz Ak = U2y infisy, Ay lnka::)Ak -
lim (infg>, Ag). Similarly for supy>,, Ax \ O

= Equivalence relations: An equivalence relation is a binary relation ~ on a set A
(a set of ordered pairs from A) that is reflexive (a ~ a), symmetric (a ~ b <
b ~ a) and transitive (a ~ b, b~ ¢ = a ~ ¢).

= The equivalence class of a € A under ~ is [a] := {x € A: x ~ a}. Example:
“=" (is equal to), e.g. 1/2 = 2/4, and both belong to the same equivalence

class of cancelled fractions on Q.
{1, we A,

= |ndicator functions: The indicator function of A C Qis 14(w) :=
0, we¢A.

We have:
1) Tpye=1—14
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2) 14 <1p(ie 1g(w) <1p(w) forallweQ)iff ACB
3) Indicator functions belong to the most useful functions there are. They can
be used to count quantities, e.g.:

limsup 4,, = {w € A4,, io} = {w €Q: Z 14, (w) = OO}’
n—r00 n=1

linning” ={w e A, abfm} = {w € Q:;]lA%(w) < oo}.

Preimages: The preimage of a map X : Q — €’ between two sets Q, () is

X1A)={weQ: X(w) e A}

Sketch:

Preimages exist even if X is not injective (e.g. for X (w) = w?, X1([1,4]) =
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= Preimages are closed with respect to (wrt) the following operations:
Complementation: If A’ C @/, then (X ~1(A"))% = X~ 1(A’w),

Union:

Intersection:

Monotonicity:

© Marius Hofert

Proof. w € (X 1(A))® & w ¢ X 1HA) & X(w) ¢
Ao X(w)e A & we X 1A @), O
If {Aj}ier € P(Q), then X~ (Uier A7) = Uier X 1(4)).
Proof. w € X Y (U;e; 4)) & X(w) € Ujer 4) & Ji €
I: Xw)e A &Jiel :we X4 swe
Uier X71(47). m
If {Ai}ier € P(), then XM (Mics A7) = Nies X (A)).
Proof. w € X Y(N;es 4L) & X(w) € Nies As & X (w) €
AlViel swe X HA)Viel & we e X HA.
O
If A',B CP(Y), ACB (ie. A € A = A €), then
XA ={Xx1(A): A e A} C X 1B).
Proof. A€ X 1(A') = A= X"1(A) for some A" € A’
A= X YA forsome A €eB' = Ac X Y(B). O
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2 Measure theory
2.1 Non-measureable sets
2.2 Systems of sets

2.3 Measures

2.4 Probability measures

2.5 Null sets

2.6 Construction of measures
2.7 Borel measures on R

2.8 Borel measures on R%, d > 2
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= Question: A fundamental question in measure theory is to measure the volume
(or size; or, later, probability) \(A) > 0 of aset A C Rd(: ), d > 1. Consider
d =1 (later also d > 1). How can this be done?
= A reasonable such A\ : 7 — [0, o] (some F; A for now informally called measure)
should
1) assign to an interval its length: \((a.0]) =b—aVa,beR:a <,
2) be invariant under translations, rotations and reflections: VA,B C R
congruent, A(A) = \(B);
3) be o-additive: If {Ai}iEN - P(R), A; ﬂAj =0V 7£ 7, then )\(‘F?il Al) =
21 A(A;). At the moment it is not so clear why additivity (without the
“o—" part) is not sufficient to consider, T. 2.2 will address that.
= Note that A must be monotone since \(B) = A(A W (B\A))
A(B\A) > A(A) VA C B, another reasonable property.

AMA) +

5

2.1 Non-measureable sets

Question: Can we simply take 7 = P(R) = {A : A C R} as domain? No!
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Theorem 2.1 (Vitali’s theorem)
There is no A defined on P(RR) which satisfies 1)-3).

Proof. We construct a set 1/, such that, when changed according to 1)-3), we
obtain a contradiction.

Consider [0,1]. Then = ~ y < x — y € Q defines an equivalence relation
(reflexive, symmetric and transitive) on [0, 1], with equivalence classes [z] :=
{ye[0,1]:y ~ 2z}, x €]0,1].

The distinct equivalence classes of “~" partition [0, 1].

The Vitali set contains precisely one element of each distinct equivalence class
of "~", i.e.

V={vel0,1]: Yz €]0,1] v~ z};

the construction requires the axiom of choice (we assumed to have in ZFC).
Let {¢x }ren be a unique enumeration of Q@ M [—1, 1]. This can be constructed
with Cantor’s first diagonal argument, here for Q (skip those numbers already
covered to get a unique enumeration):
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1 1 1 1 1 1
0— 7 - *3 +3 — *3 t: — =5
N a N v
2 2 2 2 2 2
+1 +35 +3 +7 +3 +5
1l a v /"
3 3 3 3 3 3
+37 +5 +3 +3 +3 *5
v /! v
+1 +3 +3 +1 +3 +5
{ a v
5 5 5 5 5 5
+3 +35 +3 +37 +3 +5
v
6 6 6 6 6 6
. .

= Define the shifted sets V), := V' + ¢ = {v+q v e V]
= Then [0, 1] € [4;=, Vi € [—1.,2], since:
i) Ui, Vi € [—1.2], k € N. Proof. Vi, C [-1,2], k € N.
i) [0.1] € UpZ, Vi. Proof. Let x € [0,1]. Since “~" partitions [0, 1] into

its equivalence classes, we have x € [v] for some v € V = & — v = gy, for
© Marius Hofert Section 2.1 | p. 25



ii)

=01 CWR Ve C[-12 = 1= A0, 1) S AW Ve) < M([-1,2) =3 =
T<SYREAVR) <3 5 1< A(V) <3¢

some k = x=v+q; € V.

The V}'s are pairwise disjoint.

Proof. If x € V; NV} for some k # j, then x = vi, + ¢ and x = v; + g; for
some vg,v; € V and distinct g, q; € QN [—1,1]. Thus vy =2 —qr #

k#J
xr —qj = vj, so that Juy,v; € V 1 v, # vj but vy, — 2 = —q;, € Q and
vi —x = —qj € Q, so vy ~ x and v; ~ x = v ~ v; which contradicts

the definition of V' (V' contains precisely one element of each equivalence
class). O

O]

The Vitali set V is known as a non-measurable set, a set we cannot reasonably
measure (assign a volume to). In d > 1, we can consider V x [0,1]¢"! as a
non-measurable set.

Question: How about weakening o-additivity to finitely-many sets only?
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Theorem 2.2 (Banach and Tarski (1924))
Let d > 3, A, B C R? bounded, non-empty interior. Then 3% € N and partitions
A= Lﬂle A;,, B= Lﬂle B; such that A;, B; are congruent Vi=1,... k.

" Banach—Tarski paradox. More colloquial, a pea can be chopped up and reassem-
bled into the sun (= buy gold, double it). But the partition elements are not
easily constructed, their volumes are impossible to define (since A(A4;) = A(B;)
for all 4, at least one of the sets must be non-measurable, otherwise A = B).

= For countable €2, one can always define A or more general measures p on P ()
(see later), but for uncountable €2, P(£2) can contain non-measurable sets (e.g.
Vitali sets). P(€2) is thus too large to be useful for measuring volumes.

® |nstead, we need to define A or more general p on a family of sets 7 C P(())
that is closed w.r.t. certain set operations (i.e. performing these operations on

sets in F yields a set in F).

Question: The construction being put aside for now, what are the types of sets
F we can construct measures 1 on (and what are their properties)?
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2.2 Systems of sets

In the construction of measures, several systems of sets (families of sets satisfying

certain properties) play a role, including the following (later also 7-systems and

Dynkin systems).

Definition 2.3 (Semiring)

A CP(Q) is a semiring on ) if

i) DeA

i) ABe A= ANBe A and

i) A,B e A= A\B = ., A; for some n € N and 4;,..., A, € A with
AiNA;=0Vi#j.

Definition 2.4 (Ring)

ACP(Q)is a ring on Q if

i) DeA

i) ABe A= AUBec A; and

i) A,Be A= A\B € A.
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Definition 2.5 (Algebra)
A CP(Q) is an algebra (or field) on § if

i) QeA
i) Ac A= A°=Q\A € A; and
i) A Be A= AUBe€ A.

Definition 2.6 (o-algebra)

A CP(Q) is an o-algebra (or o-field) on § if
i) QeA

i) Ac A= A°=Q\A € A; and

i) {Aitien CA= U214 € A

Proposition 2.7 (o-algebra C algebra C ring C semiring)

Every o-algebra is an algebra, every algebra a ring, and every ring a semiring on
), with the inclusions being strict. An algebra on a finite set () is a o-algebra. If
() is an element of a ring, the ring is an algebra. If a semiring is closed wrt the
union of two sets, the semiring is a ring.
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Proof.

= g-algebra C algebra: Take {A;}ien C P(Q) with 4, =0 Vn >3 = D. 2.5iii).
Strictness: Consider Q = (0,1], = {WiLi(ai,bi] : 0 < a; < b <
1 for some n € N} is an algebra but since (0,1) = Up21(0,1 — 1/n] ¢ A,
A is not a o-algebra. If |Q] < oo, every countable union of sets in A is a finite
union, so an algebra on (2 is also a o-algebra.

® algebra C ring: 0 = QCGA This implies that if A, B € A, then A\B =

ANB® = (AU B)* E A = D. 2.4 iii). Strictness: On Q = {1,2,3,4},
A= {0, (11,12}, (3}, {1.2}, {1,3}, {2,3}, {1,2,3}} is a ring (check) but not
an algebra since {1,2,3}¢ = {4} ¢ A. If Q € A, then A° = Q\A € A, so the
ring A is also an algebra.

" ring C semiring: ANB = AN(ANBe)® = A\(A\B) | £ A= D.23ii).
And A,Be A o A\B € A and thus A\B satisfies D. 2 3 m) Strictness:
OnQ=1{1,2,3 4} A={0,{1},{2},{3},{1,2,3}} is a semiring (check) but
not a ring since {1} U {2} = {1,2} ¢ A. If A is closed wrt the union of two
sets, then by induction also for finitely many, so also for finitely many pairwise
disjoint sets = A\B =/, A; € A. O
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Remark 2.8 (About o-algebras)
= A og-algebra F (typical notation) is a family of subsets of €2 that includes €, is
closed under complements and countable unions.

" o-algebras are also closed w.r.t. countable intersections since (12, A; =

e Morgan
(U2, AS)¢ € F. So o-algebras contain complements, countable unions and
countable intersections, complements of such sets, etc. Apart from special

cases, it seems hopeless to imagine all sets in F.

Example 2.9 (Examples of o-algebras)

1) The trivial o-algebra F = {(),Q)} is the smallest o-algebra (contained in every
o-algebra) and the power set F = P(€)) is the largest o-algebra.

2) Let AC Q. Then F = {0, A, A°,Q} is a o-algebra.

3) Let ABCQ A¢ B BZ A ANB #0, AUB # Q. Then F =
{0,ANB,AN B, AN B,A°N B¢, A, A°, B, B, (AN B) U (A°N B°), (AN
BYU(A°NB),(ANB)¢, (AN B¢, (A°N B)¢, (A°N B¢, Q} is a o-algebra.
Construction: The four disjoint intersections AN B, AN B¢ AN B, AN B¢
partition 2. Imagine taking the union of O of these 4 elements to form a new
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set (so §2), then of 1 of these 4 (so each at a time), then of 2 (all unions of
two of these elements; only 2 not covered yet), then of 3 (so the complement
of each), then of all 4 (so §); clearly, there are 2* = 16 sets. Such ideas are
best imagined with a Venn diagram: \

(o,

"

With 3 sets, this can be up to 2% = 256 sets already.

4) Let 2 be any set. The countable-cocountable o-algebra F = {A C Q :
A is countable or A¢ is countable} is a o-algebra:
i) Q°=0is countable = Q € F;
i) AeF = Ais countable or A¢ is countable = (A®)¢ is countable or A€ is
countable = A€ is countable or (A€)¢ is countable = A¢ € F.
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i) {Aitien € F.
Case 1: A; countable Vi € N ™™ [ J®, A; countable = (J°; 4; € F.

g. argv

Case 2: Elk e N: A uncountable ATy A countable = (U2 A;)°
21 Af C Aj, countable :> U 1Ai e F.

Let F be a a—algebra on Q and Q' C Q. The trace o-algebra

De Morgan

! L /.
F'=F|, ={AnQ: Ac F})
of V' in F is a o-algebra on 0':
i) @ =anq . F; Venn diagram:
i) A E]:':>E|A€]-"such that A’ = ANQ = S
(A/)CQ/ — (A N Q )CQ/ . ,\i'ganAch (Q )CQ/ —
A U= A = A0 nQ e F,

K

iii) {A;}zeN - F' =VieN dA4;, € F: A; =
AnQ = UZ 4 = U4 n Q) =
( e 1A)ﬂQ’ S F.

U";Ai eF
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6) Let X : Q — ' be a map between two sets 2, Y, and let 7’ be a o-algebra
on Q. Then
F=o(X)=X NF)={X"1A): A cF}
is a o-algebra on 2, the preimage o-algebra or o-algebra generated by X:
: — yv-1l/0y :
i) Q=X"HQ) €0
i) AcF=3AcF A=X"1(A) = A% =(X"1(A))=
A f'
i) {Ai}ien CF = VieN, A4; = X" 1(A]) for some A} € F' = U2, A; =

BN £, XU A e F

7) A filtration is an increasing sequence F; C F» C ... of o-algebras and can be

71(AICQ/)

s.12

used to model information accrual over time.
Example: Consider modeling infinite coin tosses with
0={0,1}* ={w = (w1,ws,...) :w; € {0,1} Vi € N}.
Let 7, = {{w €O (wy, .. w,) e A} for some A C {0, 1}”} model all events
whose occurence can be decided after the first n tosses (e.g. B = {w € Q:

w3 = 1} € F3 but B ¢ ./T"Q)
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Then:

= VYneN, F, = {{w €Q:(w,...,wy) € A} for some A C {0,1}"} is a
o-algebra on €2:
i) A={0,1}" = Qe Fp;
i) If B e F, for some A C {0,1}", then B¢ is obtained for A° C {0,1}"
= B¢ c Fy;
i) If {Bi}ien C Fy, with corresponding sets { 4; }ieny € {0,1}" = U2 B; =
{{wEQ:(wl,...,wn)GA}forA:UfilAi}U €

oo

> AiC{on"

m F:=J;2, F; is an algebra but not a o-algebra:
i) JF| o-algebra = Qe Fy Sy Qe F;
i) A€F=3ieN:AeF = Ac€F=AEF
i) For Ay,...,A, € F, 3j1,...,Jn e Nt A, € Fj,,i=1,...,n =

Al An € Fraxiiyin} . g Uizt Ai € Fmaxji,gn} € F-

However, let A; = {w € Q:w; =1}, i €N, and Aoy = {w € Q: wony = 1}.
Then A; € F; C F Vi€ N, but Aoy = (Njean Ai ¢ F (since the occurrence
of Aoy cannot be determined in n tosses for any finite n).
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Question: What is the smallest o-algebra on €2 containing a given A C P(Q)?

Proposition 2.10 (o-algebra generated by A)
Given A C P(Q), 3! minimal o-algebra on ) containing A, the o-algebra

generated by A, o(A) := ﬂ F.If G C F', F' o-algebra, then o(G) C F'.
Fo-alg.,, FOA

Proof. Let F 4 :={F : F o-algebra, F O A}, so that 0(A) = Nrcr, F.
1) o(A) is a o-algebra on Q since
i) Fe€Faisao-algebra= Qe FVFe€Fa= Q€ Nper, F =0(A);
i) Aea(A):Ae]—“VJ—“eJ—“Afzg_ACe]—“V]—“e]—"A:ACe
Nrers T 5 o(A);
i) If {A;}ien Co(A) = {Ai}ien CFVF e Fa= U1 Ai€e FYF € Fy
= U2, A € o(A).
2) ACFVFe€Fa= ACNper, F=0(A) soc(A) DA
3) o(A) is the smallest o-algebra containing A since V o-algebras 7' 2O A we
have 7' € Fa = 0(A) = Nger, F S F.

4)f’QgF,Zailg_]:/E}—gja(g)‘fﬂﬂ]_—e}-g]:g]:/. D

ass.
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When considering partitions, we only need to construct unions (not intersections),
which simplifies imagining the construction of o-algebras such as o(A).

Lemma 2.11 (o-algebra generated by a partition)
If A= {A;};cn partitions €2, then 0(A) = {W;c; Ai: A € AViel, VI C N}
Proof. Let F :={W;c; Ai: A; € AViel, YI CN}. Then:
1) Fis a o-algebra:
i) Q=Wiendi £ F.

ass.

i) LetA= UleIA € FforsomeI C N. Then A¢ = (,c; A )“0 O\ Wier Ai
=Wiens Ai € F.

ass. def. F

iii) Let {Bk}keN - F. ThenVk € N, E]Ik - N : Bk = L*'Jie[k A, Therefore,
Uken Bk = Uken Wier, 4i = ;¢ Upen I e F.

J def. 7

2) o(A) C F: Each A; € F, i € N (take I = {i}), so AC F. By 1), Fis a
o-algebra, so 0(A) C F.

P.2.10

3) F C o(A): Let ey Ai € F for some I C N and A; € AVie I. Then
Aico(A)Viel = Wier Ai co(A). O

o(A) o
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Example 2.12 (o-algebra generated by unions and maps)

= |f F1,Fo are o-algebras on 2, then, in general, F; U F5 is not a o-algebra
anymore (see exercise). But if (F;);cr are o-algebras on Q, then o(F;,i €
I):=oc(U;je; Fi) is a o-algebra on €2 (the smallest that contains the union).

" letQ#0and X;: Q — Q;, i € I, with corresponding o-algebras F; on ;.
Then o(X;, i € 1) :=0(Ujer 0(Xi)) c3o0 o(Uier X; 1 (F1)) is the o-algebra

generated by (X;)ier-

Lemma 2.13 (Interpretation of o(F1, F2))

If F1, Fy are o-algebras on 2, then o(F1, F2) = o({A1NAs : A € Fi, Ay € Fa}).

Proof. Let A:={A1NAy: Ay € Fi,As € Fo}. To show: o(A) = o(F1, Fa).

“C"ATNAy € A U(ﬁ%(mlg A1 NAy € U(fl,fg) = A C O-(-/T"lv]:Z) Pﬁo
o(A) C o(Fy, Fa).

"D NeF=> A=A NQcAVA e F1 = FCA (% o(A). Similarly,
Fo C U(A) Therefore, F1 U Fo C U(.A) = U(]:l,fQ) = U(]:1 U .FQ) -

P.2.10

o(A). O
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Question: How can we define o-algebras on product spaces?

® The product space  of (Q)icr is Q= [[;c; L =={w : I = Ujer Qi : w(i) €
O, Vie [}; if I CN, then Q = {w = (wi)ieN tw; €Q; Vi e I}.

= However, if, for ¢ € I, F; is a o-algebra on €);, then F = [[;c; F; is in general
not a o-algebra on {2 anymore.

Example 2.14 (Counterexample)

Consider Q = Qy x Q9 for Q; = {0, 1} with o-algebra F; = P(Q;) = {0, {0}, {1},
{0,1}}, ¢ = 1,2. Then A; = {(0,0),(0,1),(1,0),(1,1)} = {0,1} x {0,1} =
N xQy e Fi=F xFpand Ay = {(1,1)} = {1} x {1} € F, but A;\Ay =
{(0,0),(0,1),(1,0)} cannot be written as a Cartesian product A} x A, with
A; e Fi,t=1,2, s0 Al\AQ ¢ F.

Definition 2.15 (Product o-algebra)

For i € I, let F; be a o-algebra on €;, and let 2 = [];c; €2 be the product
space. Fori € I, let m; : 2 — €; denote the projection onto the ith coordinate
with corresponding preimage 7; '(4;) = {w € Q : m(w) € A;}. Then the
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product-c-algebra on € is
®fi::U(7Ti,i€I)E%QO'(UO' )Ed:;ﬁ) (Uﬂ' i),
i€l N i€l

i.e., the o-algebra generated by all coordinate projections.

Proposition 2.16 (Interpretation for countable /)

If I is countable, then ®,c; Fi = o([L;e; Ai - As € Fy Viel).

Proof.

“CnVie I m N (A) = {w e Q:mw) € A} = [l A with Ay = O
VEk#i=m (A) € o([lier A A€ FVie D) "2 Upm H(Ai) €
o([ier Ai + Ai € Fi) = iy Fi = 0(Uie m ' (F2)) C o(llier Ai: Ai €
FiVie I).

“D" Let A; € Fy, i € 1. Then [[;c; Ai = ey m; (A;) and 7 t(A;) €

S.1.2

m H(F) € Uierm; (F) € o(Uier 77 (Fi) = ier Fi "5 Tlies Ai €
Ricr Fi- O

So for E. 2.14, P. 2.16 implies that 71 ® Fo = o(A1 X Ay : A; € F;) =
U({@’ {0}7 {1}7 {07 1}}2) = U({Q)v {0} X {0}7 {0} X {1}7 SE) {07 1} X {07 1} = Q})
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Question: Are there other systems of sets that can help verifying the properties
of o-algebras or “measures”?

It is often easier to verify closure wrt disjoint unions first, leading to Dynkin systems.

Definition 2.17 (Dynkin system)

D C P(Q) is a Dynkin system on ) if

i) QeD;

i) Ae D= A°e D; and

III) {Ai}iEN CD, AN AL,' =0Vi#£j= Lﬂfil A; €D.

Proposition 2.18 (Properties of Dynkin systems)

1) ii) is equivalent to ii') A,B€ D, AC B = B\AeD.

2) ii) and iii) are equivalent to ii') and iii') {A4;}ien €D, 4; /' = U2, A; € D.

3) o-algebra C Dynkin system: Every o-algebra is a Dynkin system. If D is
a Dynkin system and a 7w-system (A,B € D = AN B € D), then D is a
o-algebra.

Proof.
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1) i), ii), i) = ii")": By i) and ii), 0 € D, so, by iii), finite unions are in D (x).
Let A,B €D, AC B. Then B\A = Bn A° AM:B (B°W A)° € D
‘D), i), i) = )" A= Q\A E D.
2) "i), ii), iii) = iii")": By 1), we may also utilize ii"). Let {4;},en € D, A;
With 4y := 0 € D, and B, := An\An 1 GD n € N, we have that
Wy An = lim Upl A, = lim YD 1Bn—Un 1Bn € D.

def. N _ 300 elementwise [\ _y 5o def. iii)

“i), i), iii") = iii)": By 1), ii) and ii') imply ii). Let {A;}ien € D, A;iN
j =0Vi+#j ForneN,let B, := W, A. Then B; € D and
B, =A,WB,_1 = (AS\B,_1)¢ € N D, n > 2. Also, B, /. Thus

De Morgan i), ii"), i.

. . N
ne1 An = ]\}1_13100 Wiy An = A}gnoo Un=1Bn = UnZ1 Bn n S D.

3) = Countable unions of any sets from a o-algebra .7-" are in F, so also countable
unions of pairwise disjoint sets. Hence o-algebras are Dynkin systems.
= To see the equivalence if D is a w-system, let {A4;}ien C D. Let By := Ay €
o —1 4. _ -1 _ -1
D and B, := A,\U;—7 Ai = A, N (U5 A)° e e A, NN AS N Gw

D, n > 2. Then Uy, 4, = hm UN. A, = lim L+Jn 1 B,

elementwise [\ __y
0o .
H,—1 Bn E) D,soDis a a—algebra.
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Similar to o-algebras, §(A) := ﬂ D is the Dynkin system generated by A.
D Dynkin, DDA

Example 2.19 (Examples of Dynkin systems)

1) The trivial Dynkin system D = {(), (2} is the smallest Dynkin system (contained
in every Dynkin system) and the power set D = P({) is the largest Dynkin
system. Both are also o-algebras.

2) Let AC Q. Then 6({A}) = {0, A, A°,Q} = o({A}) is a Dynkin system and
o-algebra.

3) Let ABCQ AL B BZA ANB#0, AUB # Q. Then
d({A,B}) ={0,A,B, A°, B, Q} < o({A, B}).
)

If AN B = (disjoint) or ANB* =0 (AC B)or AANB =0 (BC A)or
A°NB° =0 (AUB=Q), then §({A, B}) = o({4, B}).
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Theorem 2.20 (Dynkin’s 7-\ theorem)
If D C P(Q) is a Dynkin system containing a m-system A, then o(A) C D. In
particular, 0(A) = o(A).

Proof.

= For the first statement, we show that §(A) is a w-system oIty d(A) is a
o-algebra = o(A) C §(A) C D.
o smallest & smallest

® The second statement follows for D = §(.A) since o(.A) is a Dynkin system
(P. 2.18 3)) containing A, thus §(A) C o(A) (and the first part implies that
a(A) Ci(A)).

& smallest

= To show that , consider for any B € the set
Dp:={Ac¢€ :ANBe } (the 'good’ sets).
1) We first show that V B € , Dp is a Dynkin system:

i) Q€d(A)and QNB=BE€ A = Qe Dg;
i) A€eDp= A€i(A)and ANB € i(A) = A°€(A) and A°N B =
B\A=B\(ANB) "I 5(A) = A° € Dg; and
© Marius Hofert ' o Section 2.2 | p. 44



iii) {Ai}ieN C Dp with 4; N Aj =0 Vi 75 i deﬁ A; € (5(./4) and A; N
B e d(A)Vi=W2, A € 0(A) and (W2, A;)) N B = W2, (4; N
B) " E " 5(4) = W, A; € Dy
2) VB € A we have 6(A) C Dp, since VA,Be A, ANB € AC (A

A 7-sys.

= A€Dp = ACDp ™" 6(A) C Dp. SoVB e A VAEI(A),

def. Dp & smallest

we haveAeDB e ANBei(A).
3) We now extend 2) VB €0(A), we have 0(A) C Dpg, since VB €0(A),

2) with

ANB ¢ §A)VAe A= ACDg = §(A) C Dp. Therefore,

§ smallest
VB eo(A) and VA €0(A), wehave A€ Dp = ANDB € d(A), sod(A)
is indeed a m-system. O

The proof used the principle of good sets. It is often used to show that a certain
property holds for all elements of a o-algebra F, we can consider the family G
of all ‘good’ subsets (those which satisfy the property). If G is a o-algebra that

contains a generator A of F, then F _ = o(A) C G = all setsin F are

F gen.by A o smallest

‘good’, so F satisfies the property. And if it is easier to verifying that G is Dynkin,
one can apply Dynkin's m — A theorem to conclude that G is a o-algebra.
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Question: What about o-algebras generated by topologies?

= g-algebras generated by topologies (sets of open sets) are of particular interest.
A topology on Q is a family of subsets 7 C P(Q2) such that i) 0,Q € T ii)
AieT,iel=UjrdieT,andii) A €T, ie{l,....n}=N, AeT.

" The following o-algebra can be defined on quite general topologies.

Definition 2.21 (Borel o-algebra, Borel sets)

If (Q,7) is a topological space (e.g. metric space), then B(Q2) :=o(T) =o({O:

O C Q, O open}) is the Borel o-algebra on §2 and its elements are Borel sets.

Borel sets include open sets, closed sets, countable unions and countable intersec-
tions of these, etc.

Question: How can we imagine them?

Lemma 2.22 (Characterization of open sets in R)

Every open set in R is a countable disjoint union of open intervals.

Proof. O C R open = For z € O, let I, := Uy open interval c 0:zer I be the open
interval of maximal length containing z. If z,y € O, then either I, = I, or

LN, =10 = LetT = {I, : x € O} be the set of all distinct intervals of maximal
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length = O = U,cole = Urez !, and the union is at most countable (each
I € T contains a ¢q; € Q). O

Proposition 2.23 (Borel o-algebra is generated by all open intervals)
If @ =R, then B(R) = o({(a,b) : a < b}).

Proof.

“C": By L. 2.22, every open O C R is a countable disjoint union of open intervals
and thus in o({(a,b) : a < b}) = {0 : 0 CR, O open} Co({(a,b):a<
b}) = B(R) = 0({0: 0 CR, O open}) - o({(a,b) : a < b}).

‘5" (ab) € BR) Ya < b= {(ab):a<b CBR = o({(@b):a<

o smallest

b}) C B(R) O

Remark 2.24 (Generators of Borel o-algebras)

1) Often, Q = R4, d > 2, is of interest, and B(Rd) is defined as in D. 2.21. L. 2.22
is then false in general (open ball # countable disjoint union of open rectangles),
but one can show that any open set is a countable union of rectangles with
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rational endpoints. With this one can show that, Vd € N,

B(RY) =o({(a,b):a,be R a <b})=0c({[a,b]:a,bc R a<b})

=o({(a, b] a,beR%a <b})=0c({[a,b):a,becR%a<b})
— o({(—o00,b) : b e RY}) = o({(a,00) : a € RY})
= o({(~o0,b] : b e R?}) = o

{

{[a,00) : @ € RY});

for a proof of o({(a,b] : a < b}) = ( ) for d = 1, see exercises. One can
also show via P. 2.16 that B(R?) = ® B(R); see also Folland (1999, P. 1.4,
P. 1.5).

2) We later (Section 5) also consider 2 = R := R U {—o00, 00} = [~00, oc]. One
can show that A C R is open iff if A is a countable union of members of
{(a,b) :a,b e R} U{[—00,b) : b e R} U{(a,o0] : @ € R}. One then obtains
B(R)={BUE:B € B(R),E C {—00,00}} and, e.g., B(R) = o({(a, o] :
a € R}) besides other representations. Furthermore, B3(R7) = ;;:1 B(R).

3) Other ©, e.g. Q = R% = [0,00]% can be obtained via the respective trace
o-algebra.
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2.3 Measures

We first define and investigate ‘measures’ (of which ‘A’, ‘P" are special cases) and
later think about how ‘measures’ arise (existence, uniqueness), which will answer
our initial question about A.

Definition 2.25 (Measurable space, measurable sets, measure, o-additivity,

measure space, (o-)finite, Borel measure)

Let F be a o-algebra on Q. Then (2, F) is a measurable space and sets in F

are measurable sets. A measure pu on F is a function such that

i) p:F —[0,00];

i) u(®) =0; and

i) {Aikien © F, AN A; = 0 Vi # 5 = uW2) 4) = T2 w(Ay) (o
additivity).

The triplet (Q,F, p) is a measure space. If Q = J2; A; for {A;}ien C F :

w(A;) < oo Vi, then p is a o-finite measure. If u(Q) < oo, then p is a finite

measure. A measure y on F = B(RY) is a Borel measure on R?, d > 1.
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On o-additivity and uncountable additivity:

= g-additivity (in contrast to finite additivity) allows for limits to be included
(pointwise limits of ‘measurable functions’ are ‘measureable’, ‘dominated con-
vergence’, construction of the ‘Lebesgue integral’, etc.; see later).
Example: For an enumeration {g;}2°; of Q N[0, 1], consider

F(@) = Lgy,gny (@) 7237 f (@) = Lgrp, (2)-

n — oo

» Then fol fn(z)dz =0V n e N (Vn we find a small enough partition such
that the n times f,, is 1 does not alter the value of the integral by a given
small £ > 0).

» Therefore fo fa(z)dz — 0, so we expect fo x)dx = 0.

» However, the Riemann mtegral fo f(z)dx does not exist (there's a rational
and an irrational number in each subinterval of [0, 1]).

= Requiring uncountable additivity would be too strong, since V A C R,

)= MU £ XA el = s 3 A 20

z€EA TxcA > xEB
|B|<oo

so all sets would have length 0.
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Question: What are examples of measures (so that we don't speak about ())?

Example 2.26 (Measures)
1) If (2, F) is a measurable space, then p(A) =0, A € F, and p(A) = ool 4y
(with the convention oo - 0 = 0) are trivial measures. They are valid measures

even if F =

P(Q).

2) For uncountable €, consider the countable-cocountable o-algebra F = {A C
2: Aor A®is countable}. Then /i(A) = T4 yncountable} iS @ measure on F:
i) p:F —[0,1] C[0,00] v;
i) (D) ,=. 0 and
iii) Let {A;}ien CF, A4iNA;=0Vi#j. Then

Case 1:

Case 2:

© Marius Hofert

A; countable Vi € N = {72, A; countable = u(Hi2; A;) =0
Also, u(A;) = 0 for all i, so indeed 3772, pu(A4;) = 0.
JAL : Ag is uncountable. Then 2, A; is uncountable and

thus p(Wi2; A;) = 1. Also, Af is countable and A; N < » Af

Vi # k, so A; must be countable Vi # k = u(4;) = O Vz *k
and p(Ag) =1, so indeed > -2, p(4;) = 1.
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3) For countable € consider 7 = P(2). Then V f : Q — [0, oo,

w(A) = Z flw), AeF,

weA
defines a measure on F:
i) f>0=pu:F —][0,00].
i) p(0) = Ypeq fw) =0

sum

i) If {Ai}ien CF, AN Aj = () Vi # j, then
f(Wa)z ¥ r@0=% ¥ 1wz X u)
i=1 wel™ A i=1 wEA; i=1

= |f f=1, then u(A) = |A] is the counting measure.
» If, for @ € Q, f(w) = Ly—zy, then u(A) = Ligeay is the Dirac measure
or point mass or unit mass of @.
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Question: What properties do measures have? Some even extend to (semi)rings.

Proposition 2.27 (Basic properties of measures)

Let (92, F, u) be a measure space.

1) ABeF = uwAUB)+ u(ANB) = u(A) + p(B). If uis finite, then
#(AU B) = u(A) + u(B) — (AN B).

2) A, Be F, AC B = u(A) < u(B) (monotonicity).
If 1(A) < oo, then M(B\A) = u(B) — p(A) (subtractivity).

3) {Ai}ien CF = u(URg Ai) < 32 u(A;) (o-subadditivity).

4) If pis finite, {A;}ien C F, Sjn = X yct,...n}:| 1= #(Nkes Ak), then

( U A; ) Z (=1)718;,  (inclusion—exclusion principle).
g=1
5) If {Ai}iGN CF, A A then pu(Us2; A;) = nlLDgO u(Ay) (cont. from below).
6) If {Ai}ien € F, A; \( and u(A;) < oo, then u(N2; 4;) = JLH;OM(AH)
(continuity from above).
7) If {B;}ien C F forms a partition of 2, A € F, then u(A) =372, (AN B;)
(law of total measure).
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Proof.

1) AUB=Aw(B\A) and B= (AN B) W (B\A). By additivity, (AU B) =
w(A) 4+ pn(B\A) and pu(B) = w(AnN B)+ u(B\A). Adding opposite sides
gives f(AUB) + u(ANB) + u(B\A) = u(A) + u(B\A) + u(B).
= |f u(B\A) < oo, subtract u(B\A) and we are done.

= And if u(B\A) = o0, then u(AU B) - 00 and u(B) =, 00, 50 the formula
as stated is still valid (it then states ' oo o).
If p is finite, subtract (AN B) from both sides in the just shown first statement.
2) j(B) = w(ANB) + p(B\A)" = "u(A) + u(B\A) > p(A). If u(A) < oo,

(o
subtract it to obtain p(B\A) :*> ,u,(B) (w(A) (irresp. of the value of u(B)).

3) Let By := Ay, B, = A\US; L A;, n > 2 = B,'s are pairwise disjoint =
21 A = th_mOUl 1A _maN—>OOUfL 1 Bi = W2, B = pn(Ui2 4;)
= M(Uz_l i) = o aad. o1 W(Bi) < Zz 1 1(A;).
4) Induction in n based on 1):
n=2:p(A1U Az) = (A1) + p(As) — p(Ar 0 Az) = Yo (—1)ILS .
n=n+1:
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n+1
(Ua)- ((UA)UAM)
7=1
() e ({) )
Jj=1 j=1
:TS:T: Z( )J IS}n"’N n+1 —,“(U 4jm‘4’rl+l)>
Jj=1 /*l
hﬁ Z(_l)j_lsj,n_FSlJL +M(An,+1) _Z<_l>171 Z ((m A/.) m44,,+1>
J=2 — j=1  JC{l,..n}:|J|=j \ keEJ

. =Y muA)
= 2 TS+ S = > (1) 3 ”(( N Ak) : A"H)

j=2 j=1 JC{1,...n}k:|J|=j keJ
n+1 n+1
_ _1\i—1qg. — _1yY-1lqg.
® SLnH"‘ZQ( 1) 5.7,n+1 = Z:l( 1) SMLH’
J= J=

where (x) holds since the first sum contains all intersections of at least two sets
of which none contains A,,. 1, and the last sum contains all intersections of at
least two sets where one is A, 1, so together we obtain the sum containing all

intersections of at least two sets among Ay, ..., Ap+1.
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Reminder: If possible and helpful, draw Venn diagrams. For 1)-4):

Q

(&

5) Ao:=0, A /= p(UZ) Ai) "2 (W2 (AiNAi—1)) =502 i(ANAi1) =

limy, 00 Zznzl p(ANA 1) = limy, o0 p( +?:1(A1\Ai71)) = limy, 00 t(An).

add. Ay

6) Let B; := Al\A, = A ﬂAg, 1 € N. Then B; /‘U?il B;, = U'?il(Al mAQ) =

v/ distr.

Al N Ufil A = AN ( z@il Al)c = A]\ﬂ;il A;. Since M(Al) < 00,

1 De Morgan

(A1) — /1< M /’1«) 5 M(Al\ N A,) = M( U B1> ”’5:)/ lim u(B),)
=1 i=1

- n—00
1=

= lim p(A\A,) Wi lim (u(Ar) = p(An)) = p(Ar) — lim pu(A,).

def. 00 o0 N—»00
Since p(A1) < oo, subtract /i(A|) from both sides to get the result.
7) w(A) = p(ANQ) = p(ANWE, Bi) = nliZi (AN B;)) 2 (AN

distr. o-a:dd.
By). 0
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Proposition 2.28 (Uniqueness)

Let i, v be measures on (§2, F) and A a w-system such that 3 (A4;);eny € A with
U214 = Q, p(A;) < oo Vi€ N If pula = v|4, then pl, 4y = v|,a). In
particular, if o(A) = F, then u = v.

Proof.
1) ForBe A: j(B) < oo, let Dp:={Aca(A): p(ANB)=v(ANB)}. We
first show that D is a Dynkin system:
i) Qeo(A): uQNB)=uB) = v(B)=vQNB)= Qe D
i) A€ Dp = A € o(A) = A° € o(A). Furthermore, u(A°N B) +
p(AnB) = p((A°NB)W(ANB)) = u(B) =, v(B)=... =
v(A°N B) + v(ANB), with p(ANB) = v(ANDB) nanm g
WA°NB) =v(A°NB) = A°€ Dg;and
i) {Aitien CDp: AiNA;=0Vi#j= p((Wi2 A)NB) = (W2, (Ain
B)) = YEZimANB) = Y v(AinB) =... = vy, Ai)NB)
= WX, A; € Dp. o
2) By ass., A is a w-system, so V A1, A2 € A, A; N As € A and thus pu(A; N
AQ) = V(Al ﬂAg), so A - D/;. By Dynkin's T\ T., (I(.A) - DB C (T(.A)
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SoDp=0(A)VB e A: u(B) <oo,thusu(ANB)=v(ANB) VA€ a(A),
VBe A: u(B) < .

3) i) Byass, 3(Ai)ien CA: U2 A =Q, u(A;) < oo VieN. Let Af =10
and A =P, A n€N. Then A, 7 Q and A, = " (A\AL ) is a
disjoint decomposition of A into sets of o(.A).

i) VAeo(A),

pAnA) = ,u( L-lj ANA;nN A;CI> = Z,u(A NAL N A)
=1 =1
€o(4) €A
)=... = y(AnA).

n
LN AN AL N A s
) =1 S————— S~~~ e
€o(A) €A

iii) Therefore, VA © o(A), p(A) = p(ANQ) £ lim, o0 u(AN A)
lim, oo V(ANA)=... = u(A).

backwards

=

By i), o-finiteness on A can be replaced by the existence of (A;);eny C A, A; /2
with p(4;) < oo, i € N, (exhausting sequence). This trivially holds if p is finite.
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Example 2.29 (Product measure)

For j =1,...,d, let ); be equipped with a o-algebra F;. The product space
H;l:l €2; can then be equipped with the product-o-algebra ®§-l:1 Fj o*(]_[;l:1 Aj:
Aj € F; Vj). If pjis a o-finite measure on (£2;, F;) Vj, then

P.2.16

d d d d d
( /lj) ( II Aj) =14y, 114 €@7F,
j=1 j=1 j=1 j=1 j=1
is the product measure on (H;l:l Q;, ®§l:1 F;); by P. 2.28, it suffices to define
H;l:l i on the m-system A = {ngl A Aj e Fj Vi)
The product measure is indeed a measure since:
i) pj:F;—[0,00,5=1,...,d = ]_[;l:l,uj : ®§l:1.7:j — [0, 00].

i) InT19-, Q;, T1j= A; =0 iff 3k € {1,...,d} : Ay = 0. As such, if Ay =0
for at least one k, then

<jﬁ1uj>(@) = (jﬁluj> ( ﬁlAJ) = jﬁlua‘(Aj) i =0 0

j=
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iii) If {Ai}ien € @) Fj, AiNAj = 0Vi # j, then A; = [[}_, Ay for A; ; € F;
Vi,j. With

UA —LﬂHAz];HLﬂAu

i=1j=1 j=1li=1

we have

(1) (94) = (11

H'::]g

ug)(H UAH> - “j@rlei’j)

J=1 Jj=1li=1 j=1
g d > multply ut s d
ooadd. HZMJ tms>oZH'uJ
j=1li=1 i=1j=1
oo d d 00
;(M(m ) a2<m>
i=1"j= Jj=
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2.4 Null sets

Definition 2.30 (Null set, a.e., a.s., completeness)

If (Q,F, ) is a measure space, every N & F : p(N) = 0is a (p-)null set. If
a statement holds Vw € Q\N for a null set N, it holds (y-)almost everywhere
(a.e.), or, if p is a probability measure, the statement holds (;:-)almost surely
(a.s.). If F contains all subsets of null sets, p is a complete measure.

If a statement holds Vw € (2, one says it holds "everywhere”, “surely” (or “point-
wise"). Whether a statement holds everywhere/surely or only a.e./a.s. typically
does not matter as every (in)equality involving measures holds irrespectively of
changes on null sets.

Question: What collection of null sets is still a null set?

Lemma 2.31 (Countable union of null sets)

A countable union of null sets in F is a null set in F.

Proof. If {N~}Z~€N C F are null sets, then U2y N; € F and 0 < p(U2 Ni)
< 2 p(N;) = 322,00 =0. O

o-subadd.
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Question: If 1 is not complete, can we extend it to a complete measure /1 so that
M p /
all subsets N’ of null sets N are measurable sets, with g(N’) = 0?7

Theorem 2.32 (Completion of a o-algebra and measure)

Let (92, F, ) be a measure space and N = {N € F : u(N) = 0}. Then

1) F:={AUN' : A€ F, N C N for N € N'} is a o-algebra on Q, the
completion of F.

2) W((AUN") :=pu(A)YA e F, VN' C N for N € N uniquely extends x to a

complete measure on F.

Proof.
1)i) Q=QubeF;

i) AcF=A=AUNforsome Ac F, NcN:NDN' Wlog, assume
AN N = 0; otherwise consider N’ +~ N'\A and N « N\A € . Then
A=AUN' = AUDUODUN""Z(ANN)U(ANN)U(N N NYU(NN
N') = (AUN)N(N°UN’), so that A° = ((AUN) N (N°UN'))

(AUN)® U (N\N') e F.
€Fa AN e F ?1\767\,/

De Morgan
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iii) {Al}lengiz‘il:AZUN{ fOFAiGF, NZGNNlQN{VZGNi
22 A = U (A U N = (U A U (U2 ) € F.
NS N
€ QUZ1 NiNiee ]-'N
2) = jiis well-defined on F since for AjUN] = Ay UN},, we have A C AJUN] =
Ay U Nj and so (A1) < p(A2) + 0, and likewise p(As) < p(Ar), so
(A1) = p(Az) and thus fi(A1) = p(Ar) = p(Az) = p(Az).
" /i is a measure on I (by definition, we already know that ji| 7 = p):
i) w:F —=1[0,00] = ji: F —[0,00];
i) 0=0uUldecF = i) =pdud) = pu®) =0; and
i) Vi € N, let Ay = A;UN! for A; € F, N; ¢ N : N; D N! and
/Lﬂ/_lj:(DVi;éj Then (ks Oof_l):*( 1A U (W2 N’))
n(WiZ, Ai)(,_a:dd_ i1 (A )def i1 ,U(A U N/)de S A ) where
(%) holds since 452, A; € F, U 1N’ c Uz NL2€31N
» Uniqueness: Suppose 3 a complete measure 7 on F : (AU N') = u(A)
VA€ F YN CN,¥NeN. Then 5(AUN") < 5(A) + 5(N') = 5(A)

_ o _ _ , subadd. , /
+0 o w(A) " a(A) < p(AUN’). Likewise u(AUN") < v(AUN’),

so i(AUN") = (AUN")."" O
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2.5 Construction of measures

Question: How can we construct measures on general measurable spaces?

= Main idea: Start from a ‘premeasure’ 11 (a notion of measure) on a sufficiently
simple system of sets A C P(2) and extend pg via an ‘outer measure’ u* to
a measure /. on o(A). Results of this form are referred to as Carathéodory
extension theorem, attributed to Constantin Carathéodory (1873-1950).

= To be consistent (not leading to contradictions), A should have some structure:

» Folland (1999, T. 1.13, T. 1.14), Durrett (2019, T. A.1.1, T. A.1.3): A'is
an algebra (= Hahn—Kolmogorov theorem)

» Bauer (2001, T.5.1, T. 5.3, T. 5.6), Wikipedia: Aisaring (= Carathéodory's
extension theorem)

» Klenke (2008, T. 1.53), Schilling (2006, T. 6.1): A is a semiring (=
Carathéodory's extension theorem; most general: Klenke)

= The more structure (from semirings to rings to algebras) the easier it is to prove
the extension theorem, but typically the harder it is to apply it for a specific
construction as more properties need to be verified (but note that one also has

less properties available to work with). We consider semirings.
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Premeasures have the properties of measures but are defined on a smaller domain.

Definition 2.33 (Premeasure, o-finite)

Let A be a semiring on Q. A premeasure g on A satisfies

i) po:A— 0,00

i) po(0)=0; and

i) {Aitien € A, A;NA; = O Vi#j, and 2, A € A= po(W2, 4;) =
Zz’oil ,U,Q(AZ') (a—additivity).

If Q@ =2, A; for {A;}ien C A uop(4;) < oo Vi, then g is o-finite.

Outer measures are used to approximate volumes from ‘above’ (the ‘outside’).

Definition 2.34 (Outer measure)
An outer measure p* : P(€)) — [0, 00| satisfies

i) w*0)=0;
i) A, BCQ:ACB = pu*(A) < p*(B) (monotonicity); and
i) {Aitien ©P(Q) = p*(UZy Ai) < 3252, 7 (Ai) (0-subadditivity).
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Steps of the main idea: Start with a premeasure jip on a semiring A.
1) Show that the premeasure iy defined on the semiring A induces an outer
measure u*.
2) Show that p* extends p to P(€2), i.e. "4 = 1o 4.
3) Show that A C A* where A* is the family of Carathéodory-measurable sets
A ={ACQ: " (B)=p"(BNA)+ u (BN A°) VB C Q}.

4) Show that A* is a o-algebra on Q) (3:) o(A) C A*) and " is a measure on A*.

5) Then pi:= 11"|;(4) is @ measure. Show that ji4 = jig| 4, i.e. pu extends g to
o(A).

6) Show that if y is o-finite on A, the extension p of ug to o(A) is unique.

Theorem 2.35 (Carathéodory extension theorem)
Let A be a semiring on €2 and po a o-finite premeasure on A. Then g has a
unique extension to a o-finite measure p on o(A).

Proof. Step 1) is instructive. Step 2) is more work (partly because we start with

semirings). Steps 3)-5) are the main parts of the theorem. Step 6) is uniqueness.
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1) Let u* : P(Q) — [0, 00] be defined by

w(A) = inf 110 (
U /- Z

*/1'

A;€A
where inf ) = co. In particular, if 7
covering of A by a countable union of
sets from A, then /*(A) = oo, and if
{A;}ien C A such that 1o(A;) =0
Vi, then p*(A) = 0.
We show that p* is an outer measure:
i) Ai=0VieN= pu*0)=0;
i) Let ABCQ:ACB. IfU2;4; 2 Bthen U2 4; 2D A= u*(A) <
p*(B) (as the inf over a larger number of coverings can only be smaller);
iii) Let {A;}ien € P(Q2). Wilog, assume p*(4;) < oo Vi € N; otherwise
o-subadditivity trivially holds; “oco g) oo”. By definition of the infimum,
Ve >0, 3acovering U2y Ak 2 Ai with 3721 po(Ai k) (S) wr(A;) +e/2¢,

i € N. Therefore 7%y Aix 2 U2, Ai is a covering and thus
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<UA># smauestoverZ MO Zk Z —|—€/QZ _54—2/1,

all coverings
i=1

Ase > 0 was arbitrary, we obtain (fore — 0+) p* (U2 Ai) < > oioq 1™ (4).
2) To show that p*|4 = pola, we proceed in several steps:
2.1) We show that Ay := {Wi; 4; : A4, € A, n € N} is a ring, the ring
generated by A. To this end, we first cover two auxiliary results:
a) For any A, By,...,B,, € A there are disjoint Cy,...,C € A :
A\ UjL, Bj = Uf 1 C;. Proof by induction:
=1:A,Bic A = A\31 is a finite disjoint union of sets in A.

D.23ii

m = s AU B, = (AU B\ B = (Wi C)\Bm i

= Wr_ (C)\Bym+1). By D. 2.3 iii), each C;\ B, 1 is a finite disjoint
union of sets in A, and so is f_, (C;\Bp+1) and thus A\ U;”jll B

b) Ay is a m-system: For A =W, A; € Ay and B =L B; € Ay,
we have ANB = ;""" (A;NB;) for A;NB; SRS A, so ANB € Ay.

We can now show that Ay is a ring:

i) DeAd=0e Ay
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iii) For A=W, A; € Ay and B = /.| B; € Ay, we have

no=(Wa)n(9n).z. (W )ﬂ]QBf
:L-B(A\OB) UUCZGAU
i=1 j=1 i=1i=1

for some disjoint C;; € AVie {1,...,n},le{1,... k}.
i) A,B€ Ay = AUB = (A\B)W (AN DB)W(B\A) %Aw.

2.2) Extend pg from A to its generated ring Ay by po(Wieq Ai) == D1 po(Aq).
This extension is unique as long as it is well-defined. To show well-
definedness, let Wi, A; = Lﬂ;"zl Bj, A;,Bj € A. Then A; = A; N
(Wit Bj) = WiLi(4in Bj). By additivity of po on A, 1p(4;) =
Z;nzl ,uo(AiﬂB ) Hence, Zz 1 to(A;) = 1 Z -1 o (A;NB; ) SWItC:‘;td

ce = Z;'nzl MO(BJ)-
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2.3) We now show that sy is o-additive on Ay, which implies that 1 is a

premeasure on A.

m et {A}ien C Aw, AiNA; =0Vi#j, and W72, A, €Ay = Vi€
N3n; € N: (4; )7L, C Aand A; =W;2; A;j, where 4; ﬂAkJ =
Vi #k,Vj,l. By enumerating (A; ;), 3 pairwise disjoint (A)32, € A
and a sequence of integers 0 =: kg < k1 < ko... such that A; =
Wi, 1A, i € N. This implies that (7%, A; = 472, W7, A,

= Since 1472, A; € Ay, there must exist n € N and a partition {/;}"
of N such that 472, 4; = ¥ 1UJQA for |+ UJQA e A.

®m  Therefore,

P(64) (54175 (1)

i=1j€l; Jel;

#ol.a_o-add. = def ;A()\AJZ )
by D.2.33ii) Z ZM’ pamtm Z Z”O by22) po(Ai)-
=1

i=1jel; 1=1 j=k;1+1
2.4) One can show that the premeasure g on the ring Ay is monotone
and o-subadditive; due to the ring properties, this works similarly as

the proofs of P. 2.27 2) and 3). We can now show that p*| 4 = o a.
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VA bien CT A U2 A O A € A, we have (p(A) = to(Use 1 (A; N
A)) = i po(AiNA) = limy e D3 po(AiNA) < limy, oo D ieg

o-subadd.

po(As) = 5275 po(As). Hence also for the infimum over aII such {A; }ien,

we have
o(A) < inf w(4;) = p*(A).
pold) | < acl® 4 “;/1 = p*(A)
A;eA

And the cover {A,(,0,...} C Aimplies that ;/"(A) < po(A), so u*(A) =

uo(A) VA€ A.
3) We show that A C A% i.e. u*(B) = p*(BNA)+u*(BNA)VA e A, VB C Q.
Let A € A, B C Q. By definition of the infimum, Ve > 0, 3{4;}ien C

A - sys

A:UR A D Band S ol A) < w'(B) e B = AN A A,

by D. 23||)
i € N, then A)\A = A\ E; As%iri"g +Z;1 C; ), for some n; € N and disjoint
Cit,...,Cip, € A Hence A; = E; W A\E; = E; W) C ) and

(UA)mAE_U (4,1 4) UEL,
=1
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We thus obtain that
*

BN AC S (UA)

oo oo N
dietr. (Az N AC) = Q ti‘J C,;fk,.
=1 =A;\A i=1k=1
(B 0 A) + p*(B N A°%)
u m°" oo u crsubadd
byD234u <UE)+M <1LJ1kU101k) by D 2 341) ZM
o N
- | ZMO + Z Z MO ) k
H .A*/*D.A N l lk 1
2, (B ) s
w(B)

oo N,
+ZZM*

=1 k=1

“(BNA)

;(#O(Ez)
) Zuo ) < pf

+ Z Mo(@,z:))
1
(B) +«.
Lettmg e — 0+, we obtaln L (B ﬂ A)+p (B N A€) < p*(B). Trivially,
(BnA%))
so we have equality and thus obtain that A € A* so A C A*
© Marius Hofert
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p (BNA)+p* (BN A,
m-system; see P. 2.18 3)) and that ;" is a measure on A*

def.
) We show that A" is a o-algebra (by showing it is a Dynkin system and a
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4.1) m-system: Let Ay, Ay € A" and B C ). Then (A; N Ap)® = (A7 N AW

4.2)

(Al N A(Z) S (A(1 N A(Q) |mp||es that contained inatmost1 strictlyin Ax
——— ———
strictlyin A; contained in neither
p* subadd. .
p(B) | S (BN (A0 A) + (B (4111 42)°)

=Uu (BﬂAlﬂAQ)
+u*(BNA{NA) W (BN A NAS) W (BN AN AS))

1™ subadd.

< p(BNAINAy)+p*(BNATNAg) + p* (BN AN AS)

by D.2.34iii)

+ p* (BN AT N AS)
= p"(BNAyN A+ p* (BN AN A7)

reorder

+ u (BN ASNAY) 4+ p* (BN AS mAC)
e e W(BN At (BN A BET (B),

BN Az, BNASCQ BCo
so Ay N Ay satisfies p*(B) = p*(BN (A1 N As)) + p* (BN (AN A)9)
VB CQ and thus 4; N Ay € A*.
Dynkin system:
i) VB CQ, we have p*(B)"L"u*(BNQ) + u*(BND), so Qe A*.

by def.
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i) By definition of A*, A € A* iff A° € A*, so A€ A* = A° € A"
i) Let {A;i}ien C A%, A;NA;=0Vi#j With A, =", A,

(NI A9)° € A, n e N, and Ao = 172, A, we have VB C Q,
p(BNA) = @ (BN Ay) N A) +p* (BN Antn) 047
U (BNA)+pf(BNA), neN

This implies, inductively, that ;" (B N fln) = Lot (BNA;), so

Apg1n

2T (BN A w (BN AL))

by D.2.34 ii)

B = W (BAA) +ut (BN A
O (BAA) +p(BNAL) = 3 i (B0 A) + (BN AS).
i=1

™ mon. by def.

pH(BNAg) +p*(BNAL)

A,

‘\/}W

As this inequality holds Vn € N, take the limit n — oo to see that

pH(BNAs) +p*(BNAL) > 117 (B) 2> p*(BNA) + p*(BNAS,)

=1

M*(Bm ) Ai) +pf(BNAS) = p*(BNAL)+p"(BNAS)

def. Ao
=1
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and thus equality, so A.. € A" and thus A* is a Dynkin system.
By 4.1), A" is a o-algebra. For B = A, we get o-additivity of z*:

/‘*<L_'|j1Az> = /’\(ix> a ;H*<A% N Az) + N*(Aoo N Ago)
=S (W) nas) +o= 3w
i=1 i=1 i=1

4.3) u* is a measure on the o-algebra A*:
) PQ) o [0,00] =t AT [0, 00];
i) w(0) 055 05 and

i) p* is o-additive on A*, see the last statement in 4) iii).

5) A Q) A*. By 4), A* is a o-algebra = o(A) C A* = o= ¥y is a
3 4 /

o smallest
measure. And pif4 = p*|a 5 ol.a, so p extends pig.
6) By ass., o is o-finite on A = p* and thus p are o-finite. Furthermore, as
a semiring, A is a m-system = Another o-finite measure v on o(A) with
V|4 = p|4 must coincide Wlth pon a(A), so pu is unique on o(A). O

By T. 2.32 we can always assume the extension ; to be complete, which we do.
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2.6 Borel measures on R

Question: How can we use Carathéodory’s extension theorem to construct Borel
measures on R%?

= At the core of the construction lie functions F : R? — R that are right-
continuous and increasing in a specific way.

» F:R? = Ris right-continuous if F(x) = limp_op F(x + h) =: F(x+)
Ve RY

= One also frequently utilizes F' that are grounded, i.e. Vj € {1,...,d} one has
limg, o F(x) = 0. This will be crucial for constructing Borel probability
measures on R%,

Definition 2.36 (d-increasing)

F:R* 5 Ris if , where the is
— Z (_1)Zj:1 Z‘jF(a?b%_il, e Zdbl ld)'
i€{0,1}4 —
b1, =0,
_{ah i1 =
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" Ford=1: A p F = F(b1) — F(a1), i.e. A, p,)F = 0 implies that F' is
increasing on R (F' ) in the usual sense.
" Ford=2: Ay F = F(b1,b2) = F(ay,b2) =(F (b1, a2) — F(ay, a2))

= A((Ig,[)g]A<(l|.1)1]F' :A(al,bl]F(xth) :A<a1,bl]F(.Z’1,(12)

Question: How can we better understand F-volumes?

For J C {1,...,d}, let *; = (zj)jes and xje = (zj)j¢;. For z € R, let
ar = (z,...,z) € R And for x,y € RY, let

B {5% &,
mJ(—yJ -

Yi,» J€J;
for J = {j}, we simply write ®;. . = (z1,...,Zj-1,Yj, Tj41,---,Td)-
Lemma 2.37 (Understanding F-volumes)

Let F : R? — R be d-increasing.

1) Then A F' = Aoy by - - - A(ar,be) ' or any permutation of first-order differ-
ences.

2) F-volumes are monotone, i.e. (a,b] C (c,d] implies A, I < A g .
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3) If F(x) = [13, Fj(x;), then Ao uF = 15— (F;(b;) — Fj(ay)).

4) If F is grounded, then A_ ,jF = F(x), = € R?, where ACoomt =
lima_>_oo A(a@}F.

5) If Fis grounded and 0 # J C {1,...,d}, then Ay, 1 F(x) > 0Vx e €
R/l In particular, for J = {j}, j =1,...,d, F is componentwise increasing.

Proof.
1) Proof by induction:
d =1: A(a,b]F (ff F(b) — F(CL) = A(%b}F \/
d—1=d:
Ay F = 1) p(gipli by
(a,b] Z (1)~ (ai'b; ... adby )

def.
1€{0,1}4

D D e U N i

1€{0,1}4:i3=0

D D e R A U O s Ly )
1€{0,1}4:i4=1

Atay 1 bga] - Dapr F (@1 a1, b4)

© Marius Hofert Section 2.6 | p. 78



Ay b Dap F (@1 21, 00)
= A(arl:brl]A(adflvbdfl} cee A(a1,b1]F'

This holds for any permutation of first-order differences since addition is
commutative.

2) Forall j € {1,...,d}, we have

Aa; ;1D (aje b;

J

Therefore, z; = A(g e p,e) () is / (x). Since (a,b] C (c,d], we thus have
that

A@nF 5 Alasba Alaa-rbai] - Aarbil F S Doy B + Bag o) I

ag—1,b4-1] *
1)

3) We have

A(a,b]F 1:) A(ad,bd] Ce A(ag,bg]A(al,bl]Fl(fl"l)FQ('/I"Q) R Fd(.’L‘d)
d
= A(auba] - - - Dagypa) (FL(b1) — Fi(a1)) [ Fj(zy)
=2
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4) For € RY, we have

A( Oom]F—hIn A(am}F‘EaEmoo Z( 1)ZJ 1 JF(CL“SL‘},“. a’&d Lli zd)
1€{0,1}4
d .
= Z(_l)Zj:11j lim F(aﬁl.’ﬂi,“ del zd)

ic{0,1}4 a—— T = Fla).
i€{0,

_J0, dj :1; = 1 by groundedness,
F(x), ©1=0,

5) Expanding a; to a such that ajc = —oo, and b, to b such that bjc = x e,
we have A(GJ bJ]F( ) > A(a b]F > 0 Vaj € Rl

Before we can construct Borel measures on R?, we need one more auxiliary result.
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Lemma 2.38 (Representation of differences involving multiple sets)

Let A be a semiring and A, Ay,..., A, € A. Then 3m € N and pairwise disjoint
By,...,Bm € Asuch that A\ UL, A; = WL, B;.

Proof. Proof by induction:

n=1:A\A = W, B; v

n —1=n: We have

D23|||

Pk

A\UA _ (A\UA)\AH_ (UCk)\An _kL_Jl CP\A,) = U 4 Cr

k 11=1
for pairwise disjoint {Cy }r_1, {Cr }7%, C A, which is of the required form. [

Lemma

Let po be an additive premeasure on a semiring A.

1) If Ay,..., A, € A are pairwise disjoint and A € A such that ' ; A; C A,
then >3, po(Ai) < po(A).

2) If A1,...,A,, A€ Asuch that A C U?:l A;, then MO(A) < Z?:l /L()(AZ‘).

Proof.
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1) By L. 2.38, A\WiL; A; = WL, B; for pairwise disjoint By, ..., By, € A and
A1, ..., Ap, By, ..., By, are pairwise disjoint. Therefore, 1o(A) = i to(4q)
+ > 1#0( ) > Z 1 Ho(4i).

2) Fori = 1,.. Iet A= AN A GAand Al = AN\NULZL AL Then

AACL? AOU21A = U Jr A7 For all i = 1,...,n,

AY =, Wii, Bi for pairwise disjoint B,;k e A k=1,...,n; and thus
A=W,_ Wi, B;. Since Af,..., A7 are pairwise disjoint, so are B, ; Vi, k.
Also, Wi, B, = Al C Al C A; Vi, so > )" 1/10<Bi,k)ad:d_ﬂ0(wzi:1 B 1)
< po(Ai). Therefore, pio(A) = 3511 3255 po(Big) = 2oy po(Ad). O

Theorem 2.39 (Construction of Borel measures on R%)
If F: R = R is d-increasing and right-continuous, 3! Borel measure \r such

that /\p((a./ bD = A(a’b]F, a<b.
Proof.

" A:={(a,b]: —0co <a<b< oo} isa semiring on R%:
i) ForanyacR? ()= (a,a] € A
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i) Fori=1,2, —oo < a; <b; < oo, we have
max;—1,2{a;1} min;—1 2{b;1}
(a1,b1] N (az,bs] = : ; : € A4,
max;—12{a;q} min;—i 2{b; 4}
interpreted as ) € Aif 3j € {1,...,d} : max;—; 2{a; j} > min;—1 2{b; ;}.
iii) The difference of two hypercubes (a1, b;], (a2, ba] is the union of (at most
2d, so) finitely many hypercubes and thus in A.
» We now show that yi((a, b]) := A,y [ is a o-finite premeasure on A:
i) F d-increasing = po : A — [0, 00].

d
”) uo(@) = NO((ava]) o A(ava}F gt ZiG{O,l}d(_l)ZJ 1Z]F( ta 1 “ ER)
d .
aglag ') = F(a) Zie{o,l}d(—l)zjzIZJ =0.
iii) o-additivity of po: If A3 (a,b] = Wi, (a;, bi], then po(Wii,(a:, bi]) =
po((a, b)) = Ay F ™= i A, )P = Sisg po((ai, bi]), so po

tel cEf.
additive. Let 472, (a;, b;] = (a,b] € A.
> O pollanbil) < polla b)) V€N, Wi (ai, bi] € W2 (ai, b] =
(a,b] = Ez 1 Ho((ais bi]) < po((a,b]) = .
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> polla,bl) <577 polla;, b;l): F right-continuous = @ > Ay F' =

to((z, b)) is right-continuous = For ¢ > 0, 3a € (a,b] : po((a, b))

< po((a, b})Jrv. Similarly, « — po((a,x]) is right-continuous, so

Vie N3b; € (bi, b] = po((ai, bi]) < MO(( bi]) + 5. We also
iz (

have [a,b] C (a, b] = W21 (a;, b;] C a;, 5) L= dn e N:
[a,b] € Up—:(ai,,b ) This implies that (a b] C [a,b] € Ur_i(ai,,b;,)
C U, (ai,,b;,], so jio((a. b)) S S po((as, b, ]). Hence

pol(abl) < (@b += < 3 pol(ag. b)) + <
k=1

(*—<*) Z <:U’O((aik, bzk]) + 2%) + ¢ “0§>0 Z/Lo((ai, bl]) + 2¢.
T o=l

k=1

= V= pg is o-additive = i is a premeasure on A.

e — 0+
" With A; = (4i — 1,4i] € A, i € N, we have R? = (J;cyy 4i and po(4;) =
A1, F <00 Vi, so pg is o-finite.
= By Carathéodory's extension theorem, 3! measure Ap on G(A)R.z.:sz(Rd) :

)‘FlA = po, i.e. Ap((a,b]) = po((a,b]) = AgpF, —co<a<b<oo [
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®  As mentioned before, we can assume \p to be complete. It is known as
Lebesgue-Stieltjes measure associated to F

mf Fx) = Hf/-]:l zj, x € R? then )\ := \p is the Lebesgue measure on R%. Its
domain is the completion B(R?), known as [ebesgue o-algebra. Sets in B(RY)
are Lebesgue measurable (or Lebesgue sets). Clearly, B(RY) C B(R%). One

can also show that B(R?) # B(R?); see E. 3.9 later.

= The Lebesgue measure satisfies \((a, b)) T }l:l(bj — aj). It thus assigns
hypercubes their volume as we set out to construct; one can also show its
invariance wrt translations, rotations and reflections. For general F', A\r can be
interpreted as assigning hypercubes their volume distorted by F'.

® Since R? = ?:1 R is a product space, we can also equip R with the product-o-
algebra ®4_, F; = o([1%-, B, : B; € B(R)), which, by R. 2.24 1), is B(R?).
On (R%,B(R?)), we can then consider the product measure ;1 = []9_; p;,
with p; being univariate X as A is a measure on B(R); see E. 2.29. Then
M(H;l 1(a;,b5]) = H —1 15((ag,bs]) = ?zl(bj —aj), —00 < aj < bj < oo,
j=1,...,d, so u and the d-dimensional A we constructed coincide on the
semiring A, which is a m-system by definition. Also, the d-dimensional A is

P.2.16
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o-finite as seen in the proof of T. 2.39. By P. 2.28, we thus must have p = A,
so the Lebesgue measure on R? is the product measure of the Lebesgue measure
on R. We could have thus also shown T. 2.39 for d = 1 and defined the
d-dimensional Lebesgue measure via the product measure.

Remark 2.40

1) = Ais a semiring but no ring (for a < ¢ < d < b, (a,b]\(c,d] is not a hyper-
cube, but a finite disjoint union of hypercubes). To apply Carathéodory's ex-
tension theorem for rings, one would consider the ring A, = {l+\" | (a;, b;] :
—0o0 < a; < b, < oo Vi,n € N} generated by A and show that
polli (@i byl) =571 Ay, 1 is a premeasure on Ay; see Steps 2.1)-
2.3) in the proof of T. 2.35.

» A, is not an algebra (since @ = R? ¢ Ay). To apply Carathéodory's
extension theorem for algebras, one would consider the algebra A’ :=
{Wie L - I; = (a;,b;] or [; = (a;,00) for — oo < a; < b; < oo} and
show that /i ([} (a;, bi]) := >/ | A, 5 [ is a premeasure on A'.

2) Similarly for left-continuous F" and intervals of the form [a, b), but less common.
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Question: Why does a componentwise increasing F' not suffice to construct a
measure?

Example 2.41 (Componentwise increasing - d-increasing)
Let F(x) = max{(zg-lzl z;) —d+ 1,0}, x € [0,1]%. Then F is componentwise
increasing, but not d-increasing for d > 3 since

NujpnF = Y (FDXmOE((/2)0 10 (1/2)
1€{0,1}4
=max{l+---+1+1—-d+1,0} (i;=0Vy)
—dmax{l+---+1+1/2—-d+1,0} (3!j:i;=1)
+ -+ (=1)%max{d/2 —d+ 1,0} (i; =1V))
—1-d/2<0, d>3,

so Ar does not induce a Borel measure on R?, d > 3 (since A\ ((1/2,1]) < 0).
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2.7 Lebesgue null sets

N € B(RY) : A(N) = 0 is a (Lebesgue) null set. By T.2.32, B € B(R?) iff
B = AUN for some (Borel set) A € B(R?) and N a Lebesgue null set. Other
representations are also possible, e.g. B = A\N. Lebesgue sets are thus Borel
sets modulo Lebesgue null sets.

We now provide some examples of Lebesgue null sets. We start with null sets in
R.

Example 2.42 (Lebesgue null sets in R)
1) Vz € R, {z} CRis a null set since A({z}) = ANy (x — 1/d,2]) M~ =P <=

cont. above
limy, o0 A((x — 1/n, x]) = limy o0 (z — (2 — %)) = lim, oo % =0.
2) Q C Risanull set: If Q = {q¢;}ien is an enumeration by Cantor’s first diagonal

argument, then A(Q) = 0

L.2_.31
Question: Are there also uncountable Lebesgue null sets?

3) The Cantor set is C := (24 C; with Cy :=[0,1] and C; = Cf.;l U (3 + =),
1€ N.
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: Xt

Step 1
I—| I—| C,
" Step 2
H H H HC,
0 19 2/9 13 23 79 89 1 Step 3
- -- -- -1C,
0 1

One also has C = {z € [0,1] : 2 = >7%, a;37", a; € {0,2} Vi € N}
Then:
= C is uncountable:
Proof. If C = {¢;}ien is an enumeration with, say,
1 =0.000..., c3=0200..., c3=0.002..., etc.,
then ¢ = 0.220... € C but ¢ ¢ {ci}ien ¢ (Cantor’s second diagonal
argument).
B Cis a null set:
Proof. The ith step removes 2°~! parts of length 37% from C;_1, so the

length of the removed parts is

1 <
A([0,1]\C) = 2°- 3—1+21 5 +2% —3+...:Z2H3*1

=1
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*Z 2/3)i (1_12/3 1):1,

hence 1 = A([0,1]) = A(([0, IN\C) W C) = A([0. 1]\C) + A(C) = 1+ A(C), so
AC) =0.
We thus obtain that C is an uncountable Lebesgue null set.

Now some examples of null sets in R.

Example 2.43 (Lebesgue null sets in RY)

1) A line in R? is a Lebesgue null set.
Proof. Consider wlog y = 0. Let Q = {g; }ien be an enumeration. For € > 0,
let A; = (¢ — 5.0 + 5] % (fg,i,,zw] i€ N. Then 0 < A({(z,y) :y =
0}) = AUZ 4i) = SEANA) =R e g = = Y

e — 0+

2) Similarly, any R*, k < d, or any subset thereof, in R? is a null set, e.g. planes
in R3.
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2.8 Probability measures

Definition 2.44 (Probability measure, probability space, etc.)

Let (2, F) be a measurable space. A probability measure P on F is a function

such that

i) P:F—]0,00];

i) P(Q2) =1, and

i) {Aitien € F, AiNA; = 0Vi #j = P2, 4i) = X2 P(4;) (o-
additivity).

(Q, F,P) is a probability space, ) the sample space and w € Q a sample point.

If 2 is countable (finite), (2, F,P) is discrete (finite). Any A € F is called an

event. If A= {w}, Ais a simple event, otherwise a compound event.

= () is the set of all possible results (outcomes) of an experiment we would like
to model and F contains all sets we can assign probabilities to.

= 1=P(Q) = P(Aw A° W UZ30) = P(A) + P(A°) + 25 P(B) = P(0) = 0
and P(A°) =1 —P(A), A€ F. In particular, P is a measure.
= Pis finite = all parts of P. 2.27 hold, e.g. P(AUB) = P(A)+P(B)—P(ANB).
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Example 2.45 (Probability measures)

1) If Q] < oo, F:=P(Q) and P(A) := |A|/|9], then (2, F,P) is called Laplace
probability space. The Laplace probability measure assigns each subset A C ()
its relative number of elements in comparison to ).

2) If Q is countable and F := P(2), then any probability mass function (pmf)
J:Q—=100,1]:> cq f(w) =1 induces a discrete probability measure P on
(Q,F) via

= Z fw), AeF,
weA
see also E. 2.26 3). Conversely, if P is a probability measure on F, then
flw):=P({w}), wel,
defines a pmf such that P(A) =3 4 f(w), A € F; this allows one to define
P by first defining it for simple events.
3) FQCRY: A(Q) < oo, F:=B(RQ) and P(A) := \(A)/\(Q) VA € F (relative

volume), then (Q, F,P) is called geometric probability space. For () = [0, 1],

([0, 117, B([0,1]7). \) is the standard probability space, often used in examples.
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Example 2.46 (Geometric probability space)

Suppose you want to meet with a friend on Zoom during a one-hour lunch break,

but you did not fix an exact time in that hour.

1) If you both enter randomly and each waits for max. 10 min, find the probability

that you two meet.

Solution. (2, F,P) with O = [0,60]"
((w1,ws) € [0,60)? is the arrival time in min
of you (wy) and your colleague (ws) since the

beginning of the lunch break), 7 — 5(0),

P(A) = 3j) = MA)/3600, A € F. Let
A = "you and your colleague meet” =
{(wi,w2) € Q & |w1 —wa| < 10} =

{(w1,w2) € Q:w — 10 < wy < wy + 10}.

. 2(1.60-60—1.50-50
We obtain P(A) = (3 . ) _ %_

Sketch:

W,

60 -
50

10 4

0

T
10 50 60 w,

How long would you and your colleague at least have to be willing to wait for
each other so that the probability of meeting is at least p € [0, 1]?
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Solution. Let the smallest waiting time be ¢ (in min since the beginning of
the lunchtime break) and A; = {(wi,w2) € O : jw; —wa| < t}. Asin 1) (just
10 + t), we obtain that P(4;) = 2(%'60'607%6558%)'(60%)) = 12305&)t2 =p &
2 — 120t +3600p = 0 < t12 = 60(14 /T — p). Since t; ¢ [0,60], the solution
is t2 = 60(1 — /T — p), so you and your colleague would have to be willing to

wait at least 60(1 — /1 — p) min to meet with probability p € [0, 1].

Question: Is there a characterization of probability measures on R%?

Definition 2.47 (Distribution function on R?)

F:R% - [0,1] is a (multivariate/joint) distribution function (df) if

i) limg, oo F(x) =0Vj=1,...,d (groundedness) and limg ;00 F'(x) = 1
(normalization);

i) F is d-increasing; and

iii) F' is right-continuous.
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Such functions are precisely those that characterize probability measures on R¢.

Theorem 2.48 (Characterization of probability measures on R%)

1) P induces F: If P: B(RY) — [0,1] is a probability measure, then F(x) :=
P((—o0,]) is a df and satisfies Ap|gga) = P.

2) Finduces P: If F'is a df, then P := AF|B(Rd) is a probability measure and
satisfies P((—oo, z]) = F(x) on R%.

Proof.

1) = i) We have

lim F(x) = Jim F(xj—p) = lim P((—o0,&jc—n])

CCj—>—OO def. n—00
= B (V(~oo.mjeal) =E0) =0.
n=1

Furthermore,

Floo) = lim P((—o0,qn]) = IP’( G(—oo,dn]) —PRY) = 1.

n—oo below
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i) V—o00<a<b< oo, we have
Aan ' 5, A@aba - - Dlas.bo] M
= F(@1cp,) ~ F@1cay) = B((~00,@101,]) ~ B((—00,Z100, )
S 7 (25 ()
= Aagb - A P((( ), (2 )])

= ... =P((a,b]) > 0.

def.

iii) Since F(z) = P((—o0, z]) < P((—o0,y]) = F(y), —co <z <y <
oo, we have '

1 1
lim F(x+ h)= lim F(w+> < lim F<a:+)
h—0+ n—00 n/ ® minj{n;}—oc0 min;{n;}
1 1
= lim F<az + ) = lim IP’<<—oo,:13 + })
m—00 am def. T —00 am

2 B( N (-eem+ ]) = Pl-o0.0) 2 Flo),

am
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and flipping the inequality in (*) and changing min; to max; leads to
limp 0+ F(x + h) > F(x). We thus have limp o4 F(x + h) = F(x),
x € R
®  Representation: By P. 2.28, it suffices to show that A coincides with the
finite P on the m-system A = {(—o0,b] : b € R4}, as A generates B(R?)
by R. 2.24 1). And this holds since

AF((=00,8]) = Aoy F "2 F(b) = P((—00,b)), beR

2) By T. 2.39, 3! Borel measure Ar : Ap((a,b]) = Aap ', —0 <a <b < oo.

We need to show that Ar is a probability measure (left to show: Ap(R%) = 1)
and that it satisfies A\p((—o0,x]) = F(x) Yz € R%.
®  Normalization:

Ar(RY) 2 lim Ap((—an,qn]) = lim A, 0 F
= lim ) ()&= YF(-1)n,. ., (1))
1€{0,1}4
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= Y () dim F((~1)n,... (~1)in) = 1.

n—o0
1€{0,1}4

0, dj :1; =1 by groundedness,
F(o0) = 1, +=0,

® Representation: Ap((—o0,z]) = limy, o0 Ap((—an, x]) = limn 00 A 2]

below

F=ACooqF "5 F(x), © € R O
Remark 2.49
1) Because of T.2.48 1), I'(x) := P((—oco,x|) is the df of I?, or, by 2), of \p.

2) For any probability measure on B(RY) with df F, we have P((a,b]) =

T.2.481)
Ar((a,b]) = Ay F, so the F-volume A,y is a probability, the probability
of (a,b] under F. If d ~ 259-272, the number of corners of (a,b] is ~
the number of atoms in the universe (hence “Monte Carlo simulation” for
approximating A, 5 I'; see later).
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3) If P is a probability measure on B(R?) with df F, then

P({xz}) =P ~ 1 ot i P 1
e A F e (C

n=1
i nlggo )\F<($ — dln,w:|> T nlggo A(m—d%”:c]F: Ag— o F.
In particular, if ' is continuous in «, then P({x}) = 0, so {x} is a null set.

4) The support of F is supp(F) := {x ¢ R¢: A@—hazF > 0Vh >0}, and its
range is ran(F) := {F(x) : € R9}.

5) The domain of a d-dimensional df I7 is R? and F is 1 in the upper-right
and 0 in all other regions beyond supp(F). If not, extend a F with a :=
inf supp(F) > —oo or b := supsupp(F) < oo to F on R? via F(z) =
F(min{max{z1,a;},b1},..., min{max{zy, aq}, bg}), © € R? see E. 2.41.

6) One can show that every df F' has a mixture representation

F(CC) = pacFac(w) + ded(CC) +pCSFCS(w)7
for pac, Pd; Pes > 0, Pac + pd + pes = 1, where
» F,cis an absolutely continuous df, i.e. Fac(x) = [* fac(z)dz, @ € R?, for
an integrable fac : RY — [0, 00) with J25, fac(z) dz =1, the density of Fie
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(if it exists a.e. and is integrable, fac(x) = %Fac(:c) is a density candidate,
the integration typically being done iteratively via Tonelli’s theorem; see
later);

® Fyis a discrete df, i.e. supp(Fy) = {x1,x2,...}, leading to a multivari-
ate step function, with probability mass function (pmf) x — P({x}) 5
Az (note that any F' * = F' has at most countably-many jumps as
each jump gap contains an open interval which contains a different rational
number); and

» [ is a continuous singular df, i.e. a continuous df with %ch(a:) =0 a.e.

If at least two of pac, pd, ps are in (0, 1), F is mixed-type.
Example: For d =1, pac > 0, pq > 0, pes = O:

LT N
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7) If F' is absolutely continuous with density f, then
P((CL b]) T2 A(a b]F

L.2.371)
Pt cont. A(ahbﬂ A(ad,bd / / 21, ey Zd) dZ1 . dzd

bq b1
—/ fZ1,...,Zd)dZ1...dZd: f(z)dz

(a,b]

8) For J C{1,... ,d}, Iet Fi(xy) = F(00 ca,) = limg . 00 F'(x) denote the
J-margin of F. For J = {j}, j =1,...,d, the jth margin of I''is Fj(x;) =
F(00jiyg;) = limg ; c—00 F(x). Similarly, for A = H?:l Aj € B(RY), let
P(A;) =P([1je; 4;) == P(I1}=; B;) with B; = A; for j € J and B; = Q for
j ¢ J. We thus have

Fy(zy) = leclgooF(ac) =, mchigoo P((—o0,z]) = P((—00, e o0))
= IED((—00 z,));
For J = {j}, 7 = 1,...,d, we have Fj(z;) = P((—o0,z;]); in particu-
lar, P((ay, b;]) = P((— Ooabj]\(*oovaj]) oz (=00, b5]) = P((—00,a5]) =

F(bj) — Fj(aj).
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Question: |s continuity of F related to that of Fy,..., F;?

Lemma 2.50 (Lipschitz inequality)
If F'is d-increasing and grounded then

|F'(b) |<Z|F Fj(aj)], a,beR”

Proof. |F(b) — F(a)| equals

tele.

< Z‘F bl,.. ] 1,bj,aj+1, ..,ad)—F(bl,...,bj_l,aj,aj+1,...,ad)\.

Aline ineq. 4
Suppose a; < bj, then the jth summand satisfies

|F(b1, e ,bjfl, bj, ajJrl, ey ad) — F(bl, ey bjfl, aj, aj+1, e ,ad)|
;2::32:; F(bl, ey bj_l, bj, Ajt1y--- ,ad) — F(bl, ‘e bj_1, Qj, Qj41y--- ,ad)
L.2.375
J:W}\:kgj(bj) = Fyag) J50 |F(b;) = Fiay)l;
to see the inequality, apply by — oo,...,bj_1 — 00,aj41 — 00,...,aq — 0.
Similarly for a; > b;. O
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® |n particular, if the margins Fi,..., F; of I are all continuous, then so is F.

= |f F1,..., F; are absolutely continuous, then, since Riemann integrable functions
are bounded on compact intervals, we have, Vx € R%, h > 0, that

d
|F(z) - F(xz —h)| < Z |Ej () — Fj(zj = hy)|

d
L'2':375) Z(F}(IBJ) B F]((If] - ' Fj abs cont. Z/ . Z] dZ]

7j=1
< Zijhj hj)+ 0,
j=1
so F'is left-continuous and thus continuous. Therefore, every [ with continuous
margins is continuous. The mixed-type df F' of R. 2.49 6) is not continuous and

thus not absolutely continuous (even though F’ exists a.e., namely everywhere
except in two points).

Question: |s every continuous df F' also absolutely continuous?
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Example 2.51 (Cantor df, the devil’s staircase)
Recall that C = {z € [0,1] : z = >.7°, a;37%, a; € {0,2} Vi € N}. Let

As the first case contains all base-2 expansions, we have /'(C) = |0,

1V

a den5|ty candldate f would need to satisfy f

F(z) =

o0 ajo9—i
=172 ’

SUP,<z, zeC F(Z)v

Cantor df F(x)

5 recursive steps, 31 constant parts in (0,1)

r=3:2,a;37"
x € C¢=[0,1]\C.

e C, a; €10,2},

1]. Sketches:

°

B

Cantor df F(x)

8 recursive steps, 255 constant parts in (0,1)

F is continuous. However, F' cannot be absolutely continuous as

1(F

f[o,u f(z)dz = fc

© Marius Hofert

z)dz + [oe f(

d/"“”—SEtO—i-O—O;él!

lat

ce = 0 (by construction) and thus
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A df F' on R does not necessarily have an ordinary inverse as F' neither needs
to be strictly increasing, nor continuous, but F' always has a generalized inverse,
which uniquely characterizes I,

Definition 2.52 (Generalized inverse, quantile function)
If F:R — R is increasing, the generalized inverse F~! of F is defined by

Fl(y)=inf{z e R: F(z) >y}, yeR.
If Fis a df, F~! is the quantile function (qf) of F.

F(y)
1
F(x)
Vs + :
Y21 =X T
X, T
v, :
o —+ } +—t }
0 X, X, = Xy X 0 |y1 Y, ¥s 1y
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= The graph of F~! is obtained by mirroring the graph of F' at y = . Jumps
(flat parts) of F correspond to flat parts (jumps) of F~1.

= F~1 thus uniquely characterizes F.

= One can show (see e.g. Embrechts and Hofert (2013)):
» F~! 7 and left-continuous.
» If I/ 1, continuous = F~! ordinary inverse of F' (F~1(y) = z iff y = F(z)).
» One can often work with F'~! as with the ordinary inverse (which we will

do), but be careful. E.g. in the above sketch of F and its F~1 we have

F(F~'(y1)) = w1 but Vy € [F(a2-),y3), F(F~'(y)) = y3 > v,
so, unlike the ordinary inverse, I'(F~'(y)) = y isn't always true.
The following lemma lists useful properties of generalized inverses.
Lemma 2.53 (Properties of generalized inverses)

Let T : R — R be increasing with T'(—o0) = lim,,_o T'(z) and T'(o0) =
lim, oo T'(z), and let z,y € R. Then:

1) T7YT(x)) < x. If T is strictly increasing, T~1(T(x)) = =.
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2) Let T be right-continuous. Then T~ 1(y) < oo implies T(T1(y)) > v.
Furthermore, y € ran(T') U {inf T, sup T'} implies T(T~1(y)) = y. Moreover,
if y < inf T then T(T~'(y)) >y and if y > supT then T(T1(y)) < y.

3) T(x) > y implies z > T~ !(y). The other implication holds if T is right-
continuous. Furthermore, T'(x) < y implies = < T~ !(y).

4) T is continuous if and only if 7—1 is strictly increasing on [inf T, sup 7). T is
strictly increasing if and only if 7! is continuous on ran(7).

Proof. See Embrechts and Hofert (2013). O
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