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Part II. Probabilistic Methods in Discrete Mathematics

The probabilistic method is a powerful tool in tackling many problems in discrete math-
ematics. Roughly speaking, the method works as follows: In order to prove that a
structure with certain desired property exists, one defines an appropriate probability
space of structures and then shows that the desired properties hold in this space with
positive probability.

1° The Basic Method

The Ramsey number R(k,{) is the smallest integer n such that in any 2-coloring of the
edges of K, (the complete graph on n vertices) by red and blue, there either is a red Kj,
(i.e. a complete subgraph on k vertices, all of whose edges are colored red), or there is
a blue Ky. For instance, R(3,3) = 6.

Ramsey showed that R(k,/) is finite for any two integers k and ¢. Let us derive a
lower bound for the diagonal Ramsey numbers R(k, k).

Theorem 21. If (Z) 2= () <1, then R(k,k) > n. Thus R(k,k) > 252 for all k > 3.

Proof. Consider a random 2-coloring of the edges of K, obtained by coloring each
edge independently either red or blue, where each color is equally likely. For amy:-fixed
set R of k vertices, let Ar be the event that the induced subgraph of K, on R is
monochromatic (i.e. that either all its edges are red or they are all blue). Clearly,
Pr(Ag) = >v(—l)m . Since there-are (Z) possible choices for R, the probability that at least

k
one of the events Ar occurs is at most (Z) . 21_(2) < 1. Thus, with positive probability,
no event Agr occurs and so there is a 2-coloring of K,, without monochromatic K, that
is, R(k,k) > n. Note that if k > 3 and we take n = [2%/2], then

(™ ren (n-k+1) . ko 1+k/2 k b
\k ) bl kT n 1—(* 2 n
(1) 270 < S gm <1 L hF
as k! > 21H4/2 (exercise !). Hence R(k, k) > 2%/2 for all k > 3. st ey O

Remark. This simple example demonstrates the essence of the probabilistic method.
To prove the existence of a good coloring we do not present one explicitly, but rather

show, in a nonconstructive way, that it exists.

A tournament on a set V' of n players is an orientation T = (V, E) of the edges of the
complete graph on the set of vertices V. Thus for every two distinct elements x and y of
V, either (z,y) or (y,z) is in 7', but not both. The name tournament is natural, since
one can think of the set as a set of players in which each pair participates in a single

match, where (x,y) is in the tournament iff x beats y.
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We say that tournament 7" has the property Sy if for every set of k players there is
one who beats them all. Is it true that for every finite k£ there is a tournament with

property Si?

Theorem 22. If (}})(1—27%)""% < 1, then there is a tournament on n vertices that has

the property Sj.

Proof. Consider a random tournament on the set V.= {1,2,...,n}, which is obtained
by choosing, for each 1 < i < j < n, independently, either the arc (i,7) or the arc (j,17),
where each of these two choices is equally likely. For every fixed subset K of size k
of V, let Ax be the event that there is no vertex that beats all the members of K.
- Clearly, Pr(Ag) =(1- (—l)“}n_k . This is because for each fixed vertex v € V — K, the
probability that v does not beat all the members of K is 1 — 27%, and all these n — k
events corresponding to the various possible choices of v are independent. It follows that

Pr( | 4x) < ) Pr(dg) = <Z> (1 =27RFnk

KCV KCV
|K|=k |K|=k

Therefore, with positive probability no event Ax occurs, i.e., there is a tournament on

n vertices that has property Sy. O
Remark 1. In the probabilistic method, Stirling’s formula n! = (2)"\/ 2mne®n, where
e

1
o1 <ay, < 5 and the inequality (}) < (%)k are frequently used.

en _n—k
Remark 2. Since (}) < (?)k and (1-27%)""*F < e” 28 we have (})-(1-27%)""F -0
as n — 00. So there always exists a tournament with the property Si on n vertices as

long as n is sufficiently large.

Let us now give a probabilistic proof of Bollabds Theorem on set systems (Theorem
14). Let F = {(A;, B;)}", be a family of pairs of subsets of an arbitrary set. Call F an
(r,s)-system if |A;| =r, |B;| =s, AiNB; =0 for all 1 <i <m, and A; N B; # ( for all
1<i#j<m.

Theorem 23 (Bollabas). If F = {(A;, B;)}™, is an (r,s)-system then m < ("]?).
m
Proof. Put X = |J(4; UB;). Let n = |X| and C; = X — (A; W B;) for each i.
i=1
Consider a random order w of X. For each ¢ with 1 <14 < m, let X; be the event that

all elements of A; precede those of B; in this order. Clearly
nn=1)...(n=|Ci|+1) - |[A]'-|B;|! 1

nfwdan,|X|=n (:::) _'(rts)'

and T <5 a rnuanm quef
Now let us show that the events X,; are mutually ej(clusive. Assume the contrary: let
10t

wase

7 be an order in which all the elements of A; p%’cede tflaoée of B;, and all the elements of

<PTLXO =
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roneom Vareanle

Fancpm ot

A;j precede those of B;. Suppose, without loss of generality, that the last element of A;
does not appear after the last element of A;. Then all elements of A; precede all those
of B;. contradicting the assumption that A; N B; # (. So all the events X; are mutually

exclusive. . .
It follows that@>ePr(lgd) =Y Pr(Xp=mm/("F%). So we have mu<u("F%)s
i=1 i=1
completing the proof. O

A pair of families A, B is cross-intersecting if every set in A meets every set in B.
The degree of a point x in A, denoted by d4(x), is the number of sets in A containing
x. The rank of A is the maximum cardinality of a set in A.

If A has rank a, then, by the pigeonhole principle, each set in A contains a point
x which is “popular” for the sets in B, that is, dg(x) > |B|/a. Similarly, if B has rank
b, then each member of B contains a point y for which d4(y) > |A|/b. However, this
alone does not imply that we can find a point which is popular in both families A and
B. It turns out that if we relax the “degree of popularity” by one-half, then such a point

exists.

Theorem 24 (Razborov-Vereshchagin). Let A be a family of rank a and let B be a
family of rank b. Suppose that the pair A, B is cross-intersecting. Then there exists a
|A] 18]

> — > 1
da(z) > 5 and dg(z) > o

point x such that

Proof. Assume the contrary: d4(z) < % or dg(x) < % for each x € X, where

X = U AU |J B. Now let A and B be independent random sets that are uniformly
AeA BenB
distributed in A, B respectively; that is, for each A € A and B € B, Pr(A = A) = 1/|A|

and Pr(B = B) = 1/|B|. Since the pair A, B is cross-intersecting, we have

> Pr(xe AnB) > 1. (27)
zeX
. . . da(z) 1
Let X consist of those points z for which = Pr(z € A) < — and let
| Al ; : 2b
X1 = X — Xy. By the assumption, for any x € X1, Pr(z € B) = TéT) < T By double
a

SRR, RENFIRTHERE. $§RRE.

Hep—iEmRAEN

o BEANMEFHIN + L28F, FIAMSTFHRAENESE, BAZLE—IRBFEEL2 35

RE8F.
S—#R:

o BEENMEFHEn + 12887, MENSTFHRXENEE, BAELE—MEFEEL

k+128F,
EERNTARAT:

o HARn + 15, BEnnk, WFEEMAZIBHSST.

8T EER M RIRA
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counting, doudg(z)y=n)omdy nl=n) wy nlv=u)"ujA|. Hence
zeX zeX Aé«: AeA ?Ei AeA

> Pr(ze ANB)= > Pr(zeA) 'Pr(l:v EB)

ﬂﬂle ieXl
< 5 zg;(l Pr(z e A) < = -xgiPr(:c €A)
1 da(x 1
N P i w '%x -
a
~ 24l ‘AZE:A|A| > ﬁ S 2
Similarly, wercan prove ez;( Pr(x e ANB) < % These two inequalities contradict (27)
zeXo
and thus the proof is complete. O

2°  Linearity of Expectation

Let Xq,Xo,...,X, be random variables and let X = ¢ X1 + o Xo + ... + ¢, X.

Linearity of expectation states that
E[X] =c1- E[Xl] +co- E[XQ] S S S E[Xn]

The power of this principle comes from there being no restrictions on the dependence
or independence of the X;’s. In many situations, E[X]| can be easily calculated by a
judicious decomposition into simple random variables X;.

In applications, we often use the fact that there is a point in the probability space
for which X > E[X] and a point for which X < E[X].

Theorem 25 (Szele). There is a tournament with n players and with at least n!-2~ 1)

Hamiltonian paths.

Proof. Consider the random tournament on V = {1,2,...,n}, and let X be the
number of Hamiltonian paths in it. For eachrpermutationrorof 1;2;mmymyletn X p= 1vif
o gives a Hamiltonian path, that is, (o(i),o(i + 1)) is an arc for each i = 1,2,...,n — 1
and let X, = 0 otherwise. Then X = $X, and E[X,] =Pr[X, = 1] =(+)"" . Hence

n ) . Bunmufj expercment
> rumber o Hamlton  roadls

E[X] = SE(X,) =@)- 271, ith Pt
rranber of n- permataton ond e wly nesd o il et den
It follows that some tournament has at least E[X] = n!2~(*~1) Hamiltonian paths. [J

Theorem 26. Let G = (V,E) be a graph with e edges. Then G contains a bipartite
subgraph with at least e/2 edges.
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Proof. Let T C V be a random subset given by Pr(z € T) = 1/2; these choices
are mutually independent. Call an edge zy crossing if exactly one of z and y is in 7.
Let X be the number of crossing edges and let X,, be the indicator random variable
for xy being crossing; that is X,, = 1 if zy is a crossing edge and 0 otherwise. Then

X= > X, and
zyelE

1
EXyy| =Pr(Xyy=1)=Pr(zeT) Priy¢T)+Pr(z¢T) PriyeT)= 5
Thus E[X]| = ) FE[X,,| =e/2. Hence X > e/2 for some choice of T, and the set of

zyel
those crossing edges form a bipartite graph. O

A dominating set of a graph G = (V,E) is a set U C V such that each vertex
v € V. — U has at least one neighbor in U.

Theorem 27 (Alon). Let G = (V,E) be a graph on n vertices with minimum degree

d > 1. Then G has a dominating set of at most n[l + In(d + 1)]/(6 + 1) vertices. rhelec8en]

S-o 1
Proof. Let us pick, randomly and independently, each vertex of V' with probability

p (to be determined). Let X be the random set of all vertices picked and let Y = Yy be
the random set of all vertices in V' — X that do not have any neighbor in X. Then the
expected value E[|X|] of | X]| is np.

For each fixed vertex v € V, Pr(vre Y )= Pr(v-and-its neighbors-are all-outside
X) < (1 —p)°TL. Define x, = 1 if v € Y and 0 otherwise. Then Ely,] =IPr(v €

Y) < (1= p)t Thus BIY]) = B[S vl = 5 Bhal < a(l = p)* < ne 6+, o
veV veV
1+ < e® for all z. Hence B[|X|+|Y|] < np+ne ®1; this bound is minimized when

p= ln((;j:l). It follows that

1+1In(641)

o+1
From (28) we see that there israt-least-one choice of X @V such that | X | =4 Y5 <
1+In(d+1)

0+1
is at most n[l 4+ In(d + 1)]/(d + 1). O

EX|+ Y]] < (28)

. The set U = X UYYx is clearly a dominating set of G whose cardinality

An independent set of a graph G is a set of pairwise nonadjacent vertices of G. The
independence number a(G) of G is the maximum size of an independent set.
Theorem 28 (Turdn). Let G be a graph on n vertices and let d; be the degree of the i
n 1
vertex. Then a(G) > )
ma ;:1 di +1

Proof. Let V.={1,2,...,n} and let 7 : V. — V be a random permutation taking its

values uniformly and independently with probability 1/n!. This permutation corresponds
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to a random ordering of vertices in V. LetnAj be the event-that 7w(j) > (i) for-all
neighbors j of i. There are ( d:H) possibilities to choose a (d; 4+ 1)-element set S C V
of possible m-images of i and all its d; neighbors. After that there are (|S| — 1)! = d;!
possibilities to arrange the m-images of neighbors of ¢ within S (the place of 7 (i) is fixed
— it must come first), and (n — |S|)! = (n — d; — 1)! possibilities to arrange the vertices
outsidesS: Thus

o n dz'(n—dl—l)' - 1 nln-i n
PT(AZ) N (dz + 1) n! N di +1° 2=

Let U be the set of those vertices i for which A; holds. By linearity of expectation

BUl =) Pra) =Y ——.
i=1 i=1 "

n
Thus, for some specific ordering m, |[U| > Y . Now let ij be an edge of G. Then

=1 d; +1
1=1 "
either m(i) < m(j) or w(j) < m(4). In the first case j ¢ U and in the second case i ¢ U.

So U is an independent set. O

3° The Deletion Method

As described in a previous section, the probabilistic method works as follows: In
order to prove that a structure with certain desired property exists, one defines an
appropriate probability space of structures and then shows that the desired properties
hold in this space with positive probability. In this section, we consider the situations
where the “random” structure does not have all the desired properties but may have a
few “blemishes”. With a small alternation, we remove the blemishes, getting the desired

structure.

It follows from Theorem 28 that if G has n vertices and nd/2 edges, then the in
dependence number a(G) > n/(1 + d). We can get “halfway” to this result with the
deletion method.

Theorem 29. If a graph G = (V,E) has n vertices and nd/2 edges, d > 1, then
a(G) = 25-

Proof. Let S C V be a random subset defined by Pr[v € S| = p, where p is to be
determined, and the events v € S are mutually independent. Let X = |S| and let ¥ be
the number of edges contained in S. For each edge e = ij of G, let Y, be the indicator

random variable for the event 7,7 € S; that is, Y. = 1if 4,5 € S and 0 otherwise. Then
E[Y,] =Prli,j € S] = Pr[i € S]- Pr[j € S] = p?. Since Y = Y Y,, by linearity of

. Vnu«tuul,{, 4)»»0; w.squt Same on,'xztrilywte_pQ eclk
expectation i
nd
ElY]= E ElY.] = 7]02-
eclE
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Clearly E[X] = nb, 80, again by linearity of expectation.
d
EX-Y]=np— %pz

We set p = 1/d (here using d > 1) to maximize the quantity, giving

D= =5 X= 15|

Thus there exists a specific S for whom the number of vertices in S minus the number

of edges in S is at least n/2d. Select one vertex from each edge of S) and delete it. This
leaves a set S* with at least n/2d vertices. All edges having been destroyed, S* is an

independent set. U

Recall that the girth of a graph G, denoted by girth(G), is the length of its shortest
cycles. Again, we let o(G) stand for the independence number of G and x(G) for the

chromatic number of G.

Theorem 30 (Erdés). For any integers k,{ > 1, there exists a graph G with
girth(G) > ¢ and x(G) > k.

Proof. Fix 0 < 6 < 1/¢ and let G ~ G(n,p) with p = n’~!; that is, G is a random
graph on n vertices chosen by picking each pair of vertices as an edge randomly and
independently with probability p. Let X be the number of cycles of length at most £.
How many cycles of length i, v1vs ... v;v1, can G have?

There are n(n — 1)...(n — i + 1) sequences vi,va,...,v; of distinct vertices, and
each cycle is identified by 2i of these sequences: there are two possibilities to choose the
“direction” and 4 possibilities to choose the first vertex of the cycle. Thus, for 3 <4 </
there are n(n — 1)...(n — i + 1)/2i potential cycles of length i, each of which is in G
witheprobabilitysp®. By linearity of expection
) E[X]:Zf:n(n—l)...(n—i—i-l)

i=3 21

2 ¥ «n

b= of). (29)

as @é<1. Recall Markov’s inequality: if X is a nonnegative random variable, then for
a> 0, Pr[X > a] < E[X]/a. Thus by (29), we have

PriX >n/2| < 2(—72) = o(1). (30)

3
Setting = [—In n] gives
p

Pria(@)>a] < (1)1 -p)&) <nrerelez (g1 p <o)
— e[ln n—p(z—1)/2]-x
< e[ln n—p(% In.n—1)/2lx (31)

e(—% In n4-5)z
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1
Since z = 3n'~?In n, (—5 Inn+ g)x =y=oorasm =00 By (31) we get
Pria(G) > x| =0(1) as n— oc. (32)

Now let n be sufficiently large so that Pr[X > n/2] < 0.5 and Pr{a(G) > x| < 0.5
(recall (30) & (32)). Then there is arspecifiec:Gronm vertices with-less than ny/2cycles

of length at most ¢ and with o(G) < gln n =3-n'"%In n. Remove from G a vertex

from each cycle of length at most £. This gives a graph G* with at least g verticess Now
girth(G*) > ¢ and a(G*) < a(G). Thus

. |G*| n/2 n?
> > =
x(@ )_a(G*) “3nifmnn 6lnn’

where |G*| is the number of vertices in G*. The proof is complete by taking n so that
6
n

O
6ln n
4°  The Lovész Local Lemma
Let Ay, As, ..., A, be events in a probability space. In combinatorial applications the
n

A; are “bad” events. We wish to show that Pr( () A;) > 0 so that there is a point (e.g.

=
coloring, tournament, configuration) which is “good”. The basic probabilistic method

can be written as the following. grorten - "‘k "'°£J"‘”jl" i 5‘”2 "7’” P licer canstruetion
{f the e:r:m Mcz gro:]: M

Counting Sieve. If Y Pr(A;) < 1, then Pr(() 4;) > 0.
i=1 i=1

no__
There are other simple conditions that ensure Pr( () A;) > 0.
i=1
Independence Sieve. If Ay, As, ..., A, are mutually independent and all Pr(A;) < 1,

then Pr((\ 4;) > 0.
i=1

The Lovész local lemma is a sieve method which allows for some dependence among
the A;. A graph G = (V, E) with vertex set V = {1,2,...,n} (the indices for the A;) is
called a dependency graph for Ay, As, ..., A, if for all i, A; is mutually independent of
all A; with ij ¢ F; that is, A; is independent of any combinations of U, N, these A; and
Aj.

Theorem 31 (Lovasz Local Lemma; The General Case). Let Ay, Aa,..., A, be events
with dependency graph G. Suppose there exist x1,%2,. .., Ty € [0,1) with

P’I‘(AZ) S Xy - - H (1 - :Ilj). (32)
ijEE(G)
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for alli. Then
Pr(()A4) = [J(a =) >0
i=1 i=1

Proof. We show by induction on s that for all 4,.S with |S| =s and i ¢ S

JES
Fors =0, Pr{A;] <z;- [] (1—2;) < ;isimmediate. Let us proceed to the induction
ijEE(G)
step. Clearly we may assume i is adjacent to some j € S. Now renumber the indices so

that i =mn, S ={1,2,...,s} and among j € S, ij € E(G) for 1 < j < d. Write
%&%Su}’i\nﬂ}z\%mﬂmﬁvéﬁthi _ - _
N PT[AnAl...Ad ‘ Ad+1---As]

PriA,|A1 Ay ... Ay = Ak .
A A A = e A

We bound the numerator as follows:
Pr[Anzl LAy | Zd+1 .. .XS] < Pr[A, | Xdﬂ .. .ZS] = Pr[A,]

as Aprismutually-independentrof Agigy AgisyeeayAdsy The denominator can be bounded
by the induction hypothesis:

71T (% | B o A ]
d =
PriA,.. A | Agpq1... A = Pr[Ap| Ao Al condicind oroby |- Lz BL AR AR
| A Z-l;ll P AN bl ol e S0 A1 M- E] A
d . . . fr[ir < &)
> [[(1 =) (by induction hypothesis)~ - ;=]
i=1
= 4[4 ‘..,(4,4‘1«..‘;5 7.
Thus we have the quotient Y- “FEFG C1-%g) by exsumption
na's 40)]
PriA, | A,... A <<a:
ni€E(G)
completing the induction. Hence T A [ & ]
= Gl
— n — — - ppay . JTREL A A
Pr(A; ... A,] = H PriA; | Ay ... Ai—4] N WA ds ]
i A
> [[(1—=z)>0, ) T4y
=1
’ = hlR~F ],
as desired. ]

Theorem 32 (Lovasz Local Lemma; The Symmetric Case). Let Ay, Ao, ..., A, be events
with dependency graph G such that Pr[A;] < p and degree (i) < d for alli. Ifep(d+1) <
L, then Pr[() Ai] > 0.

i=1

Remark. e is best possible.
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iJEE(G)
1 .
W By virtue of the preceding
theorem, we have Pr[( 4;] > 0. 0
i=1

Let us now give some applications of the Lovéasz local lemma. There is no known

proof of any of these results, which does not use the local lemma.

A hypergraph is a pair H = (V, E), where V is a finite set whose elements are called
vertices and E is a family of subsets of V, called edges. We say that H has property B,

or that it is 2-colorable if there is a 2-coloring of V' such that no edge is monochromatic.

T 33, diet- H = (V) -be-at himsahicl hedgesd j e
and intersects at most d other edges. If e(d+1) < 271, then H has property B.

Proof. Color each vertex of H, randomly and independently, by either blue or red
(with equal probability). For each edge f € E, let Ay be the event that f is monochro--
matic: Clearly, PriAgj=2/2ls<iy25=l. Moreover, eachreventsAgrissclearlysmutually

independent of all the other events Ay for all edges f’ that do not intersect f. The
result now follows from Theorem 32> O
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numben vf such w's ¢ §+ (6-1)F = a§

where N7 (v) = {w € V : (v,w) € E}. The number of such u’s is [at most Ad]and

hence, by our assumption and by Theorem 32, Pr( ()| A,) > 0. Therefore there is an
veV
f:V —={0,1,...,k— 1} such that for every v € V, there is u € V' with

(v,u) € B and f(u)=(f(v)+1) (mod k) (33)

Starting at an arbitrary v = vy and applying (33) repeatedly, we obtain a sequence
V0, V1,2, ... of vertices of D so that (v;,vi41) € E and f(viy1) = (f(vi) +1) (mod k)
for all ¢ > 0. Let j be the smallest integer so that there is an ¢ < j with vy = v;. The
cycle vpvpqy ... v; = vy is a directed simple cycle of D whose length is divisible by £. [

Now let us apply the general form of the Lovész local lemma to give a lower bound
for R(3,k).

k2
Theorem 356. R(3,k) > c- = for some positive constant c.
n

Proof. Color the edges of K,, independently with each edge red with probability p
and blue with probability 1 — p. For each 3-set S let Ag be “S is red” and for each k-set
T let By be “T"is blue ”. Then

Pr(Ag) =p®, Pr(Br)=(1—p)3) ~ k2,

Let S and S’ be adjacent in the dependency graph if they have a common edge; the same
holds for S, T or T, T'. Each S is adjacent to only 3(n — 3) ~ 3n other S’. Each T is
adjacent to less than (g)n < k®n/2 of the S. We use only that each S or T is adjacent
to at most (Z) — that is all — of T. Suppose that with each Ag we associate the same
rg = x, and with each By we associate the same y;r = y. According to Theorem 31, if
there exist p, x, y with
P <a(l—a)*(1 -y
and
(1-p)&) <y(1 = a2 - )6,

then R(3,k) > n.
Our objective is to find the largest possible k = k(n) for which there is such a choice

of p, x, y. An elementary but tedious computation shows that the best choice is

p=cn /2 k=con'/?Inn
x = c3/n®?, y = cq/ exp(n'/?1n? n),
2
where ¢1, cg, c3, ¢4 are some positive constants. This implies that R(3,k) > %m. O
n
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Remark. In general, we can show that if k = c¢-n® In® n for some positive constants c,
kl a
o, f3, then there exists a positive constant ¢’ such that |n > ¢/ T,
n

5° The Second Moment Method

After the expectation, the most vital statistic for a random variable X is the variance,
which is defined by var(X) = B[(X — E[X])?] and measures how spread out X is from
its expectation. As usual, let ;1 denote the expectation of X and o2 denote the variance.
The positive square root o of the variance is called the standard deviation. With this

notation, here is our basic tool.

Chebyschev’s Inequality. For any positive constant A,

1
Pri|X —p|> M) < 5Vh

The use of Chebyschev’s inequality is called the second moment method.

A set {x1,x2,...,z} of positive integers is said to have distinct sums if all sums
xS € {1,2,...,k}, are distinct. Let f(n) denote the maximal k for which there
€S
exists a set {x1,z2,...,zr} C{1,2,...,n} with distinct sums.

The simplest example of a set with distinct sums is {2! : i < logyn}. It shows
f(n) > 14 [logyn]. Erdos offered $300 for a proof or disproof that f(n) < logyn + ¢ for
some constant c.

1
=1
2

Proof. Let{z1,x9,...,z} € {1,2,...,n} be aset with distinct sums. Let £1,e5,...,¢ex
be independent random variables with Pr[e; = 1] = Pr[g; = 0] = 1/2. Let X =
€171 + €9T9 + ... + exwp, p = E[X], and 02 = var [X]. Then

Theorem 36. f(n) < logyn + = log,logyn + O(1).

_x1+x2+...+xk
- 2

and
02_3:%—#3:%%—...—{—3: n°K
B 4 4
So o < n\/E/ 2. By Chebyschev’s inequality, for any constant A > 1

)\n\/E
2

Pr{|X — p| > ] < A2

which implies that

1 )\n\/E

- = <Pr[|X—pul< 5

- ! (34
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Since {z1,x2,...,z} is a set having distinct sums, X has any particular value with
probability either 0 or 27%. Thus

Anvk

Pr{lX — p| < =~ < 2 FAn/k. (35)
Combining (34) and (35), we obtain
n> j—; . (36)
k
Claim. If n > c- o for some positive constants ¢ and «, then
k <logyn + alogylogyn + O(1). (37)

The desired inequality follows instantly from (36) and our claim. Let us now justify the
claim by contradiction.

Assume to the contrary that (37) does not hold. Then there exists three sequences
{Bi}, {ni}, and {k;} such that

e 0 < (3 < Bix1 for each i and B; — 0o as i — oo;

e n; < n;qp and logy n; > 243; for each ;

o k; < k;11 for each 4

k;
e n; > c- - and k; > logy n; + alogy logy n; + B; for each i.
K (]
Since ¢ - Ta is a strictly increasing function of k£ when k is sufficiently large, we have
2k
n;, > c- 1
! 9logy ni+alogy logy ni+fBi
> c-
- (logy n; + alogy logy i + 3;)
2Pic - (logyn;)®
= ni
logy ni + alogy logy ni + ;)
2%ic
2 ({ga o) as logyn; > 26;
> n; as f; = oo when i — oo,
a contradiction. U

As an application of the second moment method, let us now prove the famous Weier-
strass approximation theorem, which asserts that the set of real polynomials over [0, 1]

is dense in the space of all continuous functions over [0, 1].

Theorem 37 (Weierstrass Approximation Theorem). For every continuous real function
f:[0,1] = R and every € > 0, there is a polynomial p(x) such that |p(x) — f(x)] < €
for all x € [0, 1].
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Proof. Since a continuous function f : [0,1] — R is uniformly continuous, there is a
d > 0 such that if z, y € [0,1] and |z — y| < 6, then |f(x) — f(y)| < /2. In addition,
since f is bounded, there is an M > 0 such that |f(z)| < M in [0, 1].

For any = € (0,1), let B(n,x) denote the binomial random variable with n indepen-
dent trials and probability of success = for each of them. Recall that the probability
that B(n,z) = j is precisely (’;)xj(l — x)"7J, the expectation of B(n,z) is nx, and the
standard deviation is y/nx(1 — z) < y/n. In view of Chebyschev’s inequality, for every
integer n

1
Pr(|B(n,z) — nz| > n?3) < VR

Let n be a positive integer such that 1/n'/3 < Min {4, ﬁ} Then

Pr(|B(n,z) — nz| > n?3) < ﬁ for all z € (0,1).

Define

n

R0 =3 (1)aia - ay i)

i=0
We claim that for every = € [0,1], |pn(z) — f(x)| < e. Since p,(0) = f(0) and p,(1) =
f(1), it remains to justify the claim for x € (0,1).

Indeed, since > (7)z(1 — )" " = 1, we have
i=0

o)~ f@] < T (a2 A - f@lt

it |i—nx|<n2/3

ny i n—i ¢
+ X (DA (fC)+ (@)
it |i—nz|>n2/3 n
ny i n—i| gt
< Y P - ) - )
i | —x|<n—1/3<§ n
+Pr(|B(n,z) — nz| > n?3)-2M
€ €
< — _ et
S 3 + i 2M =,
completing the proof. O
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