Lemma (Triangular Criterion). Fori=1,2,...,m, let f; : Q — F be a function, where
Q is an arbitrary set and F is a field, and let a; € 2 be such that

#0 it ) = 7.
filag) = o (21)
0 ifi > j.
Then f1, fa,..., fm are linearly independent over F'.

side. By (21), all but the j* term vanish, and what remains is A; f;(a;) = 0. This, again
by (21), implies A; = 0, contradicting the choice of j. O

(3.1) Point Sets in R™ with Only Two Distances

Let A = {a1,as,...,a,} be a set of points in R". Call A a|two-distance set|if there

exist two positive constants d; and &2 such that for any 1 < i < j < m, the Euclidean

distance between a; and a;, |la; — a;|| € {d1,02}. Denote

m(n) = Max{|A| : A C R" is a two-distance set}.

Theorem 11. n(n —1)/2 <m(n) < (n+1)(n+4)/2.
Remark. The ratio of the two bounds tends to 1 as n — oo.

Proof. To establish the lower bound, let e; be the vector in R™ whose j* entry is 1

if 4 = j and 0 otherwise for i = 1, 2,...,n. Consider
A={e;+e:1<i<j<n}.

Then the pairwise distances between any two points in A take v/2 and 2. Hence A is a
two-distance set, and therefore m(n) > |A| =n(n —1)/2.

To derive the upper bound, consider an arbitrary two-distance set A = {a1,as,...,an},
whose two distances are d; and do. We aim to prove that |A| < (n+ 1)(n +4)/2.

Define the polynomial

F(z,y) = (lz = yl* = o) (lz = yl|* = 63),

where z,y € R™ and || - || is the Euclidean norm. Then this polynomial puts our two-
distance condition in a simple algebraic form
0 if i
F(ai, aj) = (22)
6303 otherwise.
Now let fi(z) = F(x,a;) for i = 1,2,...,m, where x = (x1,22,...,2,)7 € R*. Then
(22) becomes

0 if i #
filaj) =9 ,
0705 otherwise.
So, by the triangular criterion, fi(x), fo(x),..., fm(z) are linearly independent over R.

Claim. All polynomials f;(x) can be represented as linear combinations of the fol-

lowing ones
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n n
(kzlx%)27 (;lxi)x‘ﬂ .'L'i.’]fj, xialu (23)

where 1 <17,5 < n.

To justify the claim, let a; 1 be the k" entry of a;. Then

file) = (lz = all* = 0)([|lz — asl|* — 3)
= [Yai -2 aiprr+ ()2 afy — 7))
k=1 k=1 k=1

NE

n n
X an =2 Y aipme + (X 6y, — 03)].
k=1 k=1 k=1

Expanding the product, we can see that f;(z) is a linear combination of terms listed in
(23), as claimed.

Now let S be the linear space spanned by polynomials exhibited in (23) over R, that
is, S is the set of all polynomials which can be written as

n

n n n
)2+ ) B0 mhmi+ Y vimmi+ Y wisi +
k=1 k=1

j=1 1<i,j<n i=1

where a, 3;,7ij, w;, and c are all real numbers. Then the dimension of S is at most the

number of polynomials exhibited in (23), which is

1+n+ Kg) —i—n] tn41=(n+1)(n+4)/2.

In view of the independence of fi(z), fa(x),..., fm(z), we have m < dim(S) < (n +
1)(n +4)/2, completing the proof. O

(3.2) Sets with Few Intersection Sizes

Let X be a set of n elements, let F be a family of subsets of X, and let L be a finite set
of nonnegative integers. We call F an L-intersecting family if |[AN B| € L for every pair
of distinct members A, B of F.

Theorem 12 (Frankl-Wilson). Let L be a set of s integers and let F be an L-intersecting

family of an n-set. Then
n n n
< .
el et

Remark. The bound is sharp in terms of parameters n and s, as shown by the family

of all subsets of size < s of an n-set.

Proof. Let L = {{1,0s,...,0:}, X ={1,2,...,n}, and F = {A1, Ag,..., A}, where
A; € X and |Aq| < |Ag] < ... < |A4,,|- With each set A;, we associate its incidence
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vector v; € R"™ such that the k" entry of v; is 1 if £k € A; and 0 otherwise. Then
UZ-T’U]' = |AlﬂAJ|

For i =1,2,...,m, let us define the polynomial f; in n variables as follows

fi(z) = H (vl x —€y), where x € R".
k‘:ék<‘Ai|

Observe that

£0  ifi=j,
fi(vy) = o (24)
0 if i > j.
Let us now restrict the domain of f; to the n-cube Q = {0,1}" C R™. Since each
vj € 2, by (24) and the triangular criterion, f;, regarded as 2 — R functions, are linearly

independent over R. wer fld T,

2
;=

In the domain €2, we have x x; for each variable, and thus every {2 — R polyno-
mial is multilinear, where a multilinear polynomial is the sum of monomials, and each
monomial is of the form cx; i, ... x;, , where ¢ € R. The degree of a multilinear poly-
nomial is the maximum number of variables in a monomial. So each f; is-a multilinear
polynomial of degree at most s. Since the space of multilinear polynomials of degree < s

S
is generated by the products of < s distinct variables, its dimension is »_ (), which is

an upper bound for m since fi, fa,..., fim are linearly independent. O

oovusfier,r ]C,;('x) = _{E[ (1_)59_(.- Q)

Jcmm D={a.a§"

Using essentially the same argument, we can also establishathes*‘modular’=form=of

= F the above theorem. Write r € L (mod p) if » = ¢ (mod p) for at least one ¢ € L.

Theorem 13 (Deza-Frankl-Singhi). Let L be a set of integers and let p be a prime
number. Assume F = {Ay, Aa, ..., A} is a family of subsets of an n-set such that

(a) |Ai] ¢ L (mod p) fori=1,2,...,m.

(b) |[AinA;| € L (mod p) for1 <i<j<m.

||
Then |F| < > (4). O
i=0

4° The General Position Method

Let W be a linear space of dimension n. We say that a point set S C W is in general
position if any n points of S are linearly independent. The following set in R"

M, ={m,(a) = 1,,...,a" Y : a € R}
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is called the moment curve. Clearly, the points of the moment curve are in general
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o fo% fo% fo%48
[ ! 1 P
whenever aq, oo, ..., a, are distinct. _ DD RN D
P F
T
2.a?
(4.1) Bollabas’ Theorem on Set Systems N PN
“HJH' f/fﬂ /507511

Theorem 14 (Bollabds). Let Ay, As, ..., Ay, be r-sets and let By, Bs. ..., B,, be s-sets
such that

(a) A; and B; are disjoint fori=1,2,...,m;

(b) A; and B; intersect whenever 1 < i # j < m.
Then m < (ijs).

Remark. The bound in tight: Let V be an (r+s)-set, let Ay, Ao, ..., Ay, be all r-subsets
of V, where m = ("°), and let B; = V — A, for each i.

r

Proof. Let V be the union of all the sets A; and B;. We associate a vector p(v) =
(po(v), p1(v),...,p-(v))T € R"™! with each element v € V such that the set of vectors
obtained are in general position, that is, any r + 1 of them are linearly independent.

With every set W C V we associate a polynomial fy(x) in the r 4+ 1 variables z =

;l:v];<fu)) ;%>

fw(z) = e1_[W(po(v)x0 +pi(v)zs + ... + pr(v)zy).

(xo,21,...,2.)" as follows:

This is a homogeneous polynomial of degree |[W|. Clearly,

#0  if z is orthogonal to[none]of the p(v),v € W;
fw(x) = _ (25)
0 otherwise.
Let fi(z) stand for fp,(x). Then f; is homogeneous of degree s.

The vectors p(v) corresponding to all v € A; generate a subspace U; C R of
dimension r. Then dim(U;") = r + 1 — dim(U;) = 1. We can therefore select a nonzero
a; € Ui+ so that, for any v € V, a; is orthogonal to p(v) iff p(v) € U; iff v € A;.

From (25) we see that fi(a;) = 0 precisely when A; and B; intersect, that is,

£0  ifi=j

filaz) = o
0 ifi # 3.

JcBi (0‘5)
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o 2-combinations from the set {a,b,c} with no repetition allowed:

{a,b}, {b,c}, {a,c}.

¢ 2-combinations from the set {a,b,c} with repetition allowed:
{a,b},{b,c}, {a, c}, {a,a}, {b,b},{c,c}.

Theorem 1. The total number of r-combinations from an n-set with no repetition allowed
is (7).

Theorem 2. The total number of T-combinations from an n-set with repetition allowed
% (ﬂ+r—1)'

-

From this and the triangular criterion it follows that fi, fs,..., f;n are linearly inde-
pendent. Therefore, their number m is not greater than the dimension of the space of
homogeneous polynomials of degree s in r + 1 variables, which equals the number of s-
combinations of r+1 distinct objects with repetition, ((T+1)S+S_1). Som < (HS'S) = (T:fs),

completing the proof. O

(4.2) Gale’s Theorem and Kneser’s Conjecture

The purpose of this section is to find out how to distribute points fairly evenly on a
sphere. An application of this result to the chromatic theory of graphs will be a proof
of Kneser’s conjecture.

The r-sphere 8" C R"T! is defined as the set of vectors of unit length in R"*!, that
is
ST={zxeR": |z =1}
An open hemisphere centered at a is defined as the part of S™ lying strictly on one side
of a linear hyperplane: {z € S” : a’z > 0}, where a € R""! and a # 0.

Let us consider the problem on how to distribute 2m + r points on the r-sphere so
that every open hemisphere contains at least m of them. It is easy to fulfill the target on

1-sphere: just take the vertices of a regular (2m + 1)-gon. How about the general case?

Theorem 15 (Gale). For every m,r > 0, there exists an arrangement of 2m + r points

on the r-sphere such that every open hemisphere contains at least m of them.

Let us make some preparations before presenting a proof of this theorem. % ={m.(a) =1 a,...;a")" s a € R}

moment curve

Lemma (Moment Curve Kissing Lemma). Letd > 1, 0 < k and ai,...,a € R.

Then there is anlimearshyperplanesPwme

x = 0 in R such that the moment curve
Mg C R lies entirely on one side of P and that the only points of My, contained
in P are mgyq(a), fori=1,2,... k.

T

Proof. We aim to find a linear hyperplane of the form ¢*ax = 0 for some ¢ =

(Y0, 71, -+ »7a)" in R so that
e c'myi1(a) >0 forany a € R— {ay,...,a}; and

o c'myii(ay) =0fori=1,2,... k.

—

Consider the polynomial f(a) = [] (e — «;). Now define ~; to be the coefficients of the

=1

polynomial f2, that is,
Yo +ma+...+ya0t = [f(a),
)T

This makes sense as 2k < d. With ¢ = (70,71,...,74)" we have ¢c!'mgi(a) = [f(a)]?

for any a € R, from which both requirements follow immediately. O
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Corollary. Let1 <d<mn—1and0 <k < d/2. Then there exists a matriz A € R (d+1)
with the following properties:
e the rows of A are in general position (every d+1 of them are linearly independent).

Moreover,

o for every k-subset I of [n] = {1,2,...,n}, there exists a vector c € R such that,
letting Ac = (B1, B2, ..., Bn)t, we have B; =0 ifi € I and B; > 0 ifi & I.

Proof. To see this, let A be the matrix with rows mgy1(a1)?, mayi(a2)?, ..., mapi(an)?
for any n distinct reals «;, and let ¢ be the normal vector of the linear hyperplane cor-

responding to the set {mg11(a;) : ¢ € I'} as described in the lemma. O

Now we are ready to provesGale’sstheorem

Proof of Theorem 15. Let n = 2m~+r. We need to find nonzero vectors vy, ve, ..., v, €
R"*! such that for every nonzero vector x € R" !, at least m of the inequalities v;[ x>0
(1 =1,2,...,n) hold. Indeed, given such v;, dividing each by its length, we obtain an
appropriate set of points on the sphere.

We construct the v;’s in the following somehow mysterious way.

Let d = 2m — 2. Take an n X (d + 1) matrix A with the properties guaranteed
by the Corollary. Recall that rk(A) = d +1. Let U = {& € R" : ATz = 0}. Then
dim(U) =n —d—1. Now let B be an n X (n —d — 1) matrix whose columns form a
basis of U. Denote the rows of B by vi, v, ...,vl. Sincen=d=1=7r+1,v; € R*!
for each i. We aim to prove that vy, vs,...,v, are as desired.

Since rk(B) = r+1 (i.e. B has full column rank), Bx # 0 for any nonzero z in R" .
Now let us show that the number of positive entries in Bx is at least m.

Suppose the contrary: z = (21, 22, ...,2,)" = Bz has at most m — 1 positive entries;
let I C [n] be the corresponding index set of these positive entries. Then [I| <m —1 <
d/2. By the Corollary, there exists ¢ € R4T! such that Ac = b = (81, B2, ..., Bn)T satisfies
B; =0 forany i € I and 3; > 0 for any i ¢ I. Since A”B =0, b' 2 = ¢ AT Bz = 0. But

bz = Z Bizi + Z Pizi = Z Bizi,
icl igI il
so we must have z; = 0 for any i ¢ I.
It follows from the above statement that the number of nonzero entries of z is

|I| < d/2 < d+ 1. Since ATz = ATBx = 0 and since the rows of A are in general
position, we have z = 0, contradicting the fact z = Bx # 0. O

Let us now proceed to Kneser’s conjecture and its proof.
In 1955, Kneser proposed a class of graphs with no short odd cycles and with sus-

pected large chromatic number.
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Definition. For n > 2m + 1, the vertex set of Kneser’s graph K(n,m) is ([:j), the
collection of all m-subsets of [n] = {1,2,...,n}. Two vertices A, B € ([:1]) are adjacent
iff ANB = (.

Observe that the Peterson graph is the Kneser graph K (5,2).

Setting n = 2m+r (r > 1), Kneser’s graph has a legal coloring with r+2 colors: Take
element 1 of [n] and assign color 1 to all m-subsets of [n] containing 1. Next, take element
2 of [n] and assign color 2 to all uncolored m-subsets of [n] containing 2. Proceed in this
way until there are 2m — 1 elements of [n] left. We have used (2m+r)—(2m—1) =r+1
colors. The 7 + 2™ color is assigned to all m-subsets formed by the remaining 2m — 1
elements (this coloring is valid since any two m-subsets contained in these 2m—1 elements

intersect). A formal description of this procedure is given below.

Algorithm

Step 1. Set Gy = K(n,m) and i = 1.
Step 2. If i = r+ 2, goto Step 4. Else, let V; be the set of all vertices v of G; such

that the corresponding m-subset of v in [n] contains i. Color all vertices in V;

by color 7.
Step 3. Set Gj41 =G, — V; and i =i+ 1, goto Step 2.
Step 4. Color all vertices of G5 by color r + 2, stop.
Kneser conjectured that o= 2 is the precise chromatic number in all cases. This
conjecture was proved by Lovasz, using a clever topological method, in 1978.

Theorem 16 (Lovész). The chromatic number of Kneser’s graph K(2m+r,m) isr+2.

The following short proof is due to Bardany, which is based on Gale’s theorem on how
to distribute points evenly on a sphere (Theorem 15). The following theorem also plays

an important role in the proof.
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The Antipodal Lemma. If Ui,Us,...,U,11 are open sets in S” that cover S”, then

some U; contains)an antipodal pair of points x,y, that is, x +y = 0. O

Proof of Theorem 16. Suppose the contrary: K (2m+r, m) can be colored with r + 1
colors. Let us fix such a coloring and let G C S” be a Gale-set of 2m + r points, i.e.
a set with the property that every open hemisphere contains at least m points of G
(recall Theorem 15). We construct open sets Uy, Us,...,U,41 in S” as follows: = € U;
iff the open hemisphere centered at x contains m points which correspond to a vertex of
K (2m+r,m) with color i. Clearly, Uy, Us,...,Uy41 is a cover of S”. From the antipodal
lemma, it follows that some U, contains a pair of antipodal points x and —z, which
implies that there is a vertex of K (2m + r,m) with color k contained in the open hemi-
sphere centered at x, there is another vertex of K(2m + r,m) with color k contained in
the open hemisphere centered at —z. Since these two open hemisphere are disjoint, the
two corresponding vertices are adjacent according to the definition of the Kneser graph,

but they receive the same color k, a contradiction. O

5° Miscellaneous Topics

(5.1) Helly’s Theorems

A convex combination of the vectors vi,vs,...,v, € R™ is a linear combination
m m
> Avi(A; € R), where Y~ A\; = 1 and A; > 0. A convex set is a subset of R", closed
i=1 i=1

under convex combinations. The convez hull of a subset S C R™, denoted by conv(S5), is
the set of all convex combinations of the finite subsets of S. Clearly, S is convex iff § =
conv(S). It also can be shown that S is convex iff it contains the straight line segment
connecting every pair of points of S.

The dimension of a linear space over the reals has characterizations in terms of
intersection properties of convex sets. The results, Helly’s theorems, have a long history

of analogues in combinatorics.

Theorem 17. If C1,Cs,...,C,, € R"™ are convex sets such that any n + 1 of them

intersect, then all of them intersect.

Theorem 18. If Cy,Cy,...,Cy, K C R" are convex sets such that for any n + 1 of
C1,Cs,...,C,y,, there exists d € R"™ for which K + d intersects all of them, then there
exists d* € R™ such that K + d* intersects all C]s.

Remark. The quantity n + 1 cannot be reduced in either theorem. For Theorem 17,

consider the facets of a full-dimensional simplex.

Both theorems can be deduced from the following observation due to Radon.
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Lemma (Radon). Let S be a set of m > n+ 2 points in R". Then S has two disjoint

subsets S1 and Sy whose convex hulls intersect.
mz2n+2
Proof. Let S = {s1,82,...,8m}. Then $1 = Sy, 82 = Sim,...,Sm—1 — S, are linearly

m—1
dependent as m > n + 2. So there exist not all zero \;’s such that Z Xi(si — sm) =0,

m—1 m—1

or Y. AiSi+ AmSm = 0, where A\, = — > ;. Note that Z Ai = 0. Now let S; consist
=1 =1 1=
of those s; with nonnegative coefficients \; and let Sy = S S1. Separating the two

subsets of terms in the above equation, we obtain a relation

Wdé& Yises: Do oNisi= D isj (26)

yoe SA,a }Aa = .9\3 5i€51 5;€852
where Y A=) iy A >0, u; >0 for each s; € Sy and s; € Sz, and 51 # 0 # So.
$i€S1 SjGSQ
Thus dividing each side of (26) by > \;, we obtain a point in conv(S;)N conv(Sy). O
Siesl

Proof of Theorem 17. Assume first that m = n + 2. Let a; be a point in N;-;Cj.
Let S = {a1,as9,...,a,}. By Radon’s lemma, S has two disjoint subsets S; and Se with
intersecting convex hulls; let w € conv(S7) N conv(Sz). We claim that w belongs to all
C;. Indeed, for each i,a; belongs to at most one of S; and Sy. Suppose, say a; ¢ Si.
Then by the selection of a;, we see that S1 C S — {a;} C C;. So conv(S1) C C; as C; is
convex. Hence w € C;. This concludes the proof for m =n + 2.

The general case follows by induction on m. For m < n+1, there is nothing to prove.
Assume m > n + 3. By the special case just proved, every n + 2 of the C; intersect. So
every n+1 of Cy,Cs,...,Ch_9,Ch_1NC,, intersect. But then, by induction hypothesis,

all intersect. O

|The proof of Theorem 18 is left as an exercise.

(5.2) The Matrix-Tree Theorem

Let 1" be a subgraph of a simple graph G. Call T a spanning tree of G if T contains
n — 1 edges and contains no cycles, where n is the number of vertices in G. The purpose
of this section is to count the total number of spanning trees, k(G), in a given labeled

graph G. For instance, there are 16 distinct spanning trees in labeled K4 altogether as
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Consider an arbitrary orientation D of G, which is a digraph obtained from G by
assigning a direction to each edge of G.

[

"4 % “f

3

<

An orientation of G

o o o L ~

Each directed edge in D is called an arc. If arc e is directed from u to v, then w is
called the tail and v the head of e. Suppose the vertex set of D is {vy,vq,...,v,} and

the arc set is {eq,e2,..., e }. The incidence matriz A = (a;j)nxm of D is defined by
1 if v; is the tail of e;;
aij = § —1 if v; is the head of e;;
0 otherwise.

Notice that rk(A) < n—1 as the rows of A sum up to zero. Let Ay be a matrix obtained

from A by removing an arbitrary row. We shall establish the following.

Theorem 19 (The Matrix-Tree Theorem). The total number of spanning trees in G,
k(G), equals det(AgAY). oo meas ] 1]
The proof relies heavily on the following lemma. s d o
Lemma 19.1. det:Brberan (nm=1)x(n=1) submat:m (;fAzé;g/ Then
+1 if the spanning subgraph H consisting of all the edges
det(B) = corresponding to columns in B is a spanning tree of G; 4 -

0 otherwise.
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Proof. Without loss of generality, we assume Ag is obtained from A by deleting nt?
TOW.

Let us prove by induction on n. For n = 2, the assertion is trivial. So we proceed to
the induction step, and distinguish between two cases.

Case 1. Some v;, with i # n, has degree 1 in H.

According to the definition of the incidence matrix, the i** row of B contains exactly
one nonzero entry, +1, and all other entries in this row belonging to B are zero. Now
expand det(B) by this row. The resulting (n — 2) X (n — 2) determinant det(B’) will
correspond to H — v; in the same way as det(B) does to H, because H is a spanning
tree of G iff H — v; is a spanning tree of G — v; and |det(B)| = | det(B’)|. The desired

statement follows from the induction hypothesis.

> Case 2. No vertex of H has degree 1, except possibly v,.

Since H contains n — 1 edges in total, by the handshaking theorem. there exists a
vertex v; which has degree zero in H. If v; # v, then the row of B corresponding to v;
is a zero vector, and hence det(B) = 0; if v; = v,, then each column of B contains a 1
and a —1. So the sum of all rows of B is 0, implying det(B) = 0. O

To prove the theorem, we also need the following well-known formula about the

determinant of the product of two matrices.

Binet-Cauchy Theorem. If () and R are k x m and m x k matrices, respectively, with

k < m, then the determinant of the product

det(QR)= > det(Qr) - det(Ry),
1C{1,2,...,m}
|1|=k

where Qp (resp. Ryp) is the k x k submatriz of @ (resp. R) determined by the columns
(resp. rows) in I. O

Proof of Theorem 19. According to the Binet-Cauchy theorem, we have
det(ApAl) = Zdet -det(BT),
where B ranges over all (n — 1) x (n — 1) submatrices of Ag. From Lemma 19.1 we see
1 if B corresponds to a spanning tree,

det(B) - det(BT) =
0 otherwise.

Hence k(G) = det(AgA}). O
To facilitate easy computation, let us give an explicit description of AOAOT:

the degree of v; in G if i = j;
the (4,7) entry of AgAL =< —1 if v; and v; are adjacent;

0 otherwise.
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Theorem 20 (Cayley). k(K,) =n" 2.

Proof. Let vy, va, ..., v, be the vertices of K,, and let Ay correspond to v1,va, ..., Uy 1.
Then
n—1 —1 —1
-1 n-=-1 -1
AgAl = . .
- -l n=1/ w1
Since det(ApA%) = n"2, the statement follows from the matrix-tree theorem. O
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