Lemma (Triangular Criterion). For i = 1, 2, ..., m, let $f_i : \Omega \to F$ be a function, where Ω is an arbitrary set and F is a field, and let $a_i \in \Omega$ be such that

Then f_1, f_2, \ldots, f_m are linearly independent over F.

side. By (21), all but the j^{th} term vanish, and what remains is $\lambda_i f_i(a_i) = 0$. This, again by (21), implies $\lambda_i = 0$, contradicting the choice of j.

(3.1) Point Sets in \mathbb{R}^n with Only Two Distances

Let $A = \{a_1, a_2, \dots, a_m\}$ be a set of points in \mathbb{R}^n . Call A a two-distance set if there exist two positive constants δ_1 and δ_2 such that for any $1 \le i < j \le m$, the Euclidean distance between a_i and a_j , $||a_i - a_j|| \in \{\delta_1, \delta_2\}$. Denote

$$m(n) = \text{Max}\{|A| : A \subseteq \mathbb{R}^n \text{ is a two-distance set}\}.$$

Theorem 11. $n(n-1)/2 \le m(n) \le (n+1)(n+4)/2$.

 $\frac{n(n-1)}{2} \cdot \frac{2}{(n+1)(n+4)} \cdot \frac{n \to +\infty}{2} = 1$ Remark. The ratio of the two bounds tends to 1 as $n \to \infty$.

Proof. To establish the lower bound, let e_i be the vector in \mathbb{R}^n whose j^{th} entry is 1 if i = j and 0 otherwise for i = 1, 2, ..., n. Consider $e_a + e_b$ if a * c * b * d, distance > $e_c * e_d$ if a = c or b = d, distance $\sqrt{2}$ $A = \{e_i + e_j : 1 \le i \le j \le n\}.$

Then the pairwise distances between any two points in A take $\sqrt{2}$ and 2. Hence A is a two-distance set, and therefore $m(n) \ge |A| = n(n-1)/2$.

To derive the upper bound, consider an arbitrary two-distance set $A = \{a_1, a_2, \dots, a_m\}$, whose two distances are δ_1 and δ_2 . We aim to prove that $|A| \leq (n+1)(n+4)/2$.

Define the polynomial

$$F(x,y) = (\|x - y\|^2 - \delta_1^2)(\|x - y\|^2 - \delta_2^2)$$

where $x, y \in \mathbb{R}^n$ and $\|\cdot\|$ is the Euclidean norm. Then this polynomial puts our twodistance condition in a simple algebraic form

$$F(a_i, a_j) = \begin{cases} 0 & \text{if } i \neq j; \\ \delta_1^2 \delta_2^2 & \text{otherwise.} \end{cases}$$
 (22)

Now let $f_i(x) = F(x, a_i)$ for i = 1, 2, ..., m, where $x = (x_1, x_2, ..., x_n)^T \in \mathbb{R}^n$. Then (22) becomes

$$f_i(a_j) = \begin{cases} 0 & \text{if } i \neq j; \\ \delta_1^2 \delta_2^2 & \text{otherwise.} \end{cases}$$

So, by the triangular criterion, $f_1(x), f_2(x), \ldots, f_m(x)$ are linearly independent over R.

Claim. All polynomials $f_i(x)$ can be represented as linear combinations of the following ones

$$(\sum_{k=1}^{n} x_k^2)^2, (\sum_{k=1}^{n} x_k^2) x_j, x_i x_j, x_i, 1,$$
 (23)

where $1 \leq i, j \leq n$.

To justify the claim, let $a_{i,k}$ be the k^{th} entry of a_i . Then

$$f_{i}(x) = (\|x - a_{i}\|^{2} - \delta_{1}^{2})(\|x - a_{i}\|^{2} - \delta_{2}^{2})$$

$$= [\sum_{k=1}^{n} x_{k}^{2} - 2\sum_{k=1}^{n} a_{i,k}x_{k} + (\sum_{k=1}^{n} a_{i,k}^{2} - \delta_{1}^{2})] \cdot [\sum_{k=1}^{n} x_{k}^{2} - 2\sum_{k=1}^{n} a_{i,k}x_{k} + (\sum_{k=1}^{n} a_{i,k}^{2} - \delta_{2}^{2})].$$

Expanding the product, we can see that $f_i(x)$ is a linear combination of terms listed in (23), as claimed.

Now let S be the linear space spanned by polynomials exhibited in (23) over R, that is, S is the set of all polynomials which can be written as

$$\alpha(\sum_{k=1}^{n} x_k^2)^2 + \sum_{j=1}^{n} \beta_j(\sum_{k=1}^{n} x_k^2)x_j + \sum_{1 \le i, j \le n} \gamma_{ij}x_ix_j + \sum_{j=1}^{n} w_ix_j + c,$$

where $\alpha, \beta_j, \gamma_{ij}, w_i$, and c are all real numbers. Then the dimension of S is at most the number of polynomials exhibited in (23), which is

$$1 + n + \left[\binom{n}{2} + n \right] + n + 1 = (n+1)(n+4)/2.$$

In view of the independence of $f_1(x), f_2(x), \ldots, f_m(x)$, we have $m \leq \dim(S) \leq (n + 1)(n+4)/2$, completing the proof.

(3.2) Sets with Few Intersection Sizes

Let X be a set of n elements, let \mathcal{F} be a family of subsets of X, and let L be a finite set of nonnegative integers. We call \mathcal{F} an L-intersecting family if $|A \cap B| \in L$ for every pair of distinct members A, B of \mathcal{F} .

Theorem 12 (Frankl-Wilson). Let L be a set of s integers and let \mathcal{F} be an L-intersecting family of an n-set. Then

$$|\mathcal{F}| \le \binom{n}{s} + \binom{n}{s-1} + \dots + \binom{n}{0}.$$

Remark. The bound is sharp in terms of parameters n and s, as shown by the family of all subsets of size $\leq s$ of an n-set.

Proof. Let $L = \{\ell_1, \ell_2, \dots, \ell_s\}$, $X = \{1, 2, \dots, n\}$, and $\mathcal{F} = \{A_1, A_2, \dots, A_m\}$, where $A_i \subseteq X$ and $|A_1| \le |A_2| \le \dots \le |A_m|$. With each set A_i , we associate its incidence

vector $v_i \in \mathbb{R}^n$ such that the k^{th} entry of v_i is 1 if $k \in A_i$ and 0 otherwise. Then $v_i^T v_j = |A_i \cap A_j|$.

For i = 1, 2, ..., m, let us define the polynomial f_i in n variables as follows

$$f_i(x) = \prod_{k: \, \ell_k < |A_i|} (v_i^T x - \ell_k), \text{ where } x \in R^n.$$

Observe that

$$f_{i}(v_{j}) = \begin{cases} \neq 0 & \text{if } i = j, \\ 0 & \text{if } i > j. \ |A_{i}| \ge |A_{j}| \end{cases}$$
 (24)

Let us now restrict the domain of f_i to the *n*-cube $\Omega = \{0,1\}^n \subseteq \mathbb{R}^n$. Since each $v_i \in \Omega$, by (24) and the triangular criterion, f_i , regarded as $\Omega \to R$ functions, are linearly independent over R.

so ij ∈ N ⇒ ij ∈ {0.1} $p = \sum_{s \in [n]} a_s \prod_{k \in S} x_k$

The Ω , $\forall n \in \mathbb{N}$, $\chi_i^n = \chi_i^n$ independent over R.

For each variable, and thus every $\Omega \to R$ polynomial $P = \sum_{i=1}^n C_i \chi_i^n \chi_i^n - \chi_i^n$. In the domain Ω , we have $x_i^2 = x_i$ for each variable, and thus every $\Omega \to R$ polynomial $P = \sum_{i=1}^n C_i \chi_i^n \chi_i^n - \chi_i^n$. mial is multilinear, where a multilinear polynomial is the sum of monomials, and each monomial is of the form $cx_{i_1}x_{i_2}...x_{i_k}$, where $c \in R$. The degree of a multilinear polynomial is the maximum number of variables in a monomial. So each f_i is a multilinear polynomial of degree at most s. Since the space of multilinear polynomials of degree $\leq s$ is generated by the products of $\leq s$ distinct variables, its dimension is $\sum_{k=0}^{s} {n \choose k}$, which is an upper bound for m since f_1, f_2, \ldots, f_m are linearly independent.

consider $f_i(x) = \text{Tr}(\underline{v}_i^{\intercal}\underline{x} - \ell)$ Using essentially the same argument, we can also establish the "modular" form of the above theorem. Write $r \in L \pmod{p}$ if $r \equiv \ell \pmod{p}$ for at least one $\ell \in L$.

Theorem 13 (Deza-Frankl-Singhi). Let L be a set of integers and let p be a prime number. Assume $\mathcal{F} = \{A_1, A_2, \dots, A_m\}$ is a family of subsets of an n-set such that

- (a) $|A_i| \notin L \pmod{p}$ for $i = 1, 2, \ldots, m$.
- (b) $|A_i \cap A_i| \in L \pmod{p}$ for $1 \le i < j \le m$.

Then
$$|\mathcal{F}| \leq \sum_{i=0}^{|L|} \binom{n}{i}$$
.

The General Position Method

Let W be a linear space of dimension n. We say that a point set $S \subseteq W$ is in general position if any n points of S are linearly independent. The following set in \mathbb{R}^n

$$M_n = \{m_n(\alpha) = (1, \alpha, \dots, \alpha^{n-1})^T : \alpha \in R\}$$

is called the *moment curve*. Clearly, the points of the moment curve are in general position since

 $= \begin{pmatrix} l & l & l & \cdots & l \\ a_{j} & a_{j} & a_{d} & \cdots & a_{n} \\ a_{j}^{1} & a_{j}^{2} & \cdots & a_{n}^{2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{j}^{n-1} & a_{j}^{n-2} & a_{j}^{n-2} & \cdots & a_{n}^{n-2} \\ \end{pmatrix}_{(n \in I(t(n+1))}^{(n)}$

whenever $\alpha_1, \alpha_2, \dots, \alpha_n$ are distinct.

Bollabás' Theorem on Set Systems (4.1)

Theorem 14 (Bollabás). Let A_1, A_2, \ldots, A_m be r-sets and let B_1, B_2, \ldots, B_m be s-sets such that

- (a) A_i and B_i are disjoint for i = 1, 2, ..., m;
- (b) A_i and B_j intersect whenever $1 \le i \ne j \le m$. Then $m < \binom{r+s}{s}$.

Remark. The bound in tight: Let V be an (r+s)-set, let A_1, A_2, \ldots, A_m be all r-subsets of V, where $m = \binom{r+s}{r}$, and let $B_i = V - A_i$ for each i.

Proof. Let V be the union of all the sets A_i and B_i . We associate a vector p(v) = $(p_0(v), p_1(v), \dots, p_r(v))^T \in \mathbb{R}^{r+1}$ with each element $v \in V$ such that the set of vectors obtained are in general position, that is, any r+1 of them are linearly independent. With every set $W \subseteq V$ we associate a polynomial $f_W(x)$ in the r+1 variables x=1 $(x_0, x_1, \dots, x_r)^T$ as follows: $f_W(x) = \prod_{v \in W} \langle p(v), x \rangle$ $f_W(x) = \prod_{v \in W} (p_0(v)x_0 + p_1(v)x_1 + \dots + p_r(v)x_r).$

$$f_W(x) = \prod_{v \in W} \langle p(v), \chi \rangle$$

$$f_W(x) = \prod_{v \in W} (p_0(v)x_0 + p_1(v)x_1 + \ldots + p_r(v)x_r).$$

This is a homogeneous polynomial of degree |W|. Clearly,

$$f_{W}(x) = \begin{cases} \neq 0 & \text{if } x \text{ is orthogonal to none of the } p(v), v \in W; \\ 0 & \text{otherwise.} \end{cases}$$
 (25)

Let $f_i(x)$ stand for $f_{B_i}(x)$. Then f_i is homogeneous of degree s.

in general position. The vectors p(v) corresponding to all $v \in A_i$ generate a subspace $U_i \subseteq R^{r+1}$ of dimension r. Then $\dim(U_i^{\perp}) = r + 1 - \dim(U_i) = 1$. We can therefore select a nonzero $a_i \in U_i^{\perp}$ so that, for any $v \in V$, a_i is orthogonal to p(v) iff $p(v) \in U_i$ iff $v \in A_i$.

From (25) we see that $f_i(a_i) = 0$ precisely when A_i and B_i intersect, that is,

$$f_{i}(a_{j}) = \begin{cases} \neq 0 & \text{if } i = j. \\ 0 & \text{if } i \neq j. \end{cases} A_{j} \cap B_{i} = \lambda \\ 0 & \text{if } i \neq j. \end{cases}$$

$$24 \qquad \qquad A_{j} \cap B_{i} = \lambda \\ A_{j} \cap B_{i} =$$

- 2-combinations from the set $\{a,b,c\}$ with no repetition allowed: $\{a,b\},\{b,c\},\{a,c\}.$ 2-combinations from the set $\{a,b,c\}$ with repetition allowed:
- 2-combinations from the set {a, b, c} with repetition allowed {a, b}, {b, c}, {a, c}, {a, a}, {b, b}, {c, c}.

Theorem 1. The total number of r-combinations from an n-set with no repetition allowed is $\binom{n}{k}$.

Theorem 2. The total number of r-combinations from an n-set with repetition allowed is $\binom{n+r-1}{r}$.

From this and the triangular criterion it follows that f_1, f_2, \ldots, f_m are linearly independent. Therefore, their number m is not greater than the dimension of the space of homogeneous polynomials of degree s in r+1 variables, which equals the number of s-combinations of r+1 distinct objects with repetition, $\binom{(r+1)+s-1}{s}$. So $m \leq \binom{r+s}{s} = \binom{r+s}{r}$, completing the proof.

(4.2) Gale's Theorem and Kneser's Conjecture

The purpose of this section is to find out how to distribute points fairly evenly on a sphere. An application of this result to the chromatic theory of graphs will be a proof of Kneser's conjecture.

The r-sphere $S^r \subset R^{r+1}$ is defined as the set of vectors of unit length in R^{r+1} , that is

$$S^r = \{ x \in R^{r+1} : ||x|| = 1 \}.$$

An open hemisphere centered at a is defined as the part of S^r lying strictly on one side of a linear hyperplane: $\{x \in S^r : a^T x > 0\}$, where $a \in R^{r+1}$ and $a \neq 0$.

Let us consider the problem on how to distribute 2m + r points on the r-sphere so that every open hemisphere contains at least m of them. It is easy to fulfill the target on 1-sphere: just take the vertices of a regular (2m + 1)-gon. How about the general case?

Theorem 15 (Gale). For every $m, r \ge 0$, there exists an arrangement of 2m + r points on the r-sphere such that every open hemisphere contains at least m of them.

Let us make some preparations before presenting a proof of this theorem. $M_n = \{m_n(\alpha) = (1, \alpha, \dots, \alpha^{n-1})^T : \alpha \in R\}$

Lemma (Moment Curve Kissing Lemma). Let $d \ge 1$, $0 \le k \le d/2$, and $\alpha_1, \ldots, \alpha_k \in R$. Then there is a linear hyperplane $P: c^T x = 0$ in R^{d+1} such that the moment curve $M_{d+1} \subset R^{d+1}$ lies entirely on one side of P and that the only points of M_{d+1} contained in P are $m_{d+1}(\alpha_i)$, for $i = 1, 2, \ldots, k$.

Proof. We aim to find a linear hyperplane of the form $c^T x = 0$ for some $c = (\gamma_0, \gamma_1, \dots, \gamma_d)^T$ in \mathbb{R}^{d+1} so that

- $c^T m_{d+1}(\alpha) > 0$ for any $\alpha \in R \{\alpha_1, \dots, \alpha_k\}$; and
- $c^T m_{d+1}(\alpha_i) = 0$ for i = 1, 2, ..., k.

Consider the polynomial $f(\alpha) = \prod_{i=1}^{k} (\alpha - \alpha_i)$. Now define γ_i to be the coefficients of the polynomial f^2 , that is,

$$\gamma_0 + \gamma_1 \alpha + \ldots + \gamma_d \alpha^d = [f(\alpha)]^2.$$

This makes sense as $2k \leq d$. With $c = (\gamma_0, \gamma_1, \dots, \gamma_d)^T$ we have $c^T m_{d+1}(\alpha) = [f(\alpha)]^2$ for any $\alpha \in R$, from which both requirements follow immediately.

Corollary. Let $1 \le d \le n-1$ and $0 \le k \le d/2$. Then there exists a matrix $A \in \mathbb{R}^{n \times (d+1)}$ with the following properties:

- the rows of A are in general position (every d+1 of them are linearly independent).

 Moreover.
- for every k-subset I of $[n] = \{1, 2, ..., n\}$, there exists a vector $c \in R^{d+1}$ such that, letting $Ac = (\beta_1, \beta_2, ..., \beta_n)^T$, we have $\beta_i = 0$ if $i \in I$ and $\beta_i > 0$ if $i \notin I$.

Proof. To see this, let A be the matrix with rows $m_{d+1}(\alpha_1)^T, m_{d+1}(\alpha_2)^T, \dots, m_{d+1}(\alpha_n)^T$ for any n distinct reals α_i , and let c be the normal vector of the linear hyperplane corresponding to the set $\{m_{d+1}(\alpha_i): i \in I\}$ as described in the lemma. \square

Now we are ready to prove Gale's theorem. $S^{r} \subseteq \mathbb{R}^{r+1}$

Proof of Theorem 15. Let n = 2m+r. We need to find nonzero vectors $v_1, v_2, \ldots, v_n \in \mathbb{R}^{r+1}$ such that for every nonzero vector $x \in \mathbb{R}^{r+1}$, at least m of the inequalities $v_i^T x > 0$ $(i = 1, 2, \ldots, n)$ hold. Indeed, given such v_i , dividing each by its length, we obtain an appropriate set of points on the sphere.

We construct the v_i 's in the following somehow mysterious way.

Let d=2m-2. Take an $n\times (d+1)$ matrix A with the properties guaranteed by the Corollary. Recall that rk(A)=d+1. Let $U=\{x\in R^n:A^Tx=0\}$. Then $\dim(U)=n-d-1$. Now let B be an $n\times (n-d-1)$ matrix whose columns form a basis of U. Denote the rows of B by $v_1^T, v_2^T, \ldots, v_n^T$. Since n-d-1=r+1, $v_i\in R^{r+1}$ for each i. We aim to prove that v_1, v_2, \ldots, v_n are as desired.

Since rk(B) = r + 1 (i.e. B has full column rank), $Bx \neq 0$ for any nonzero x in R^{r+1} . Now let us show that the number of positive entries in Bx is at least m.

Suppose the contrary: $z = (z_1, z_2, ..., z_n)^T = Bx$ has at most m-1 positive entries; let $I \subseteq [n]$ be the corresponding index set of these positive entries. Then $|I| \le m-1 \le d/2$. By the Corollary, there exists $c \in R^{d+1}$ such that $Ac = b = (\beta_1, \beta_2, ..., \beta_n)^T$ satisfies $\beta_i = 0$ for any $i \in I$ and $\beta_i > 0$ for any $i \notin I$. Since $A^T B = 0$, $b^T z = c^T A^T Bx = 0$. But

$$b^T z = \sum_{i \in I} \beta_i z_i + \sum_{i \notin I} \beta_i z_i = \sum_{i \notin I} \beta_i z_i,$$

so we must have $z_i = 0$ for any $i \notin I$.

It follows from the above statement that the number of nonzero entries of z is $|I| \le d/2 < d+1$. Since $A^Tz = A^TBx = 0$ and since the rows of A are in general position, we have z = 0, contradicting the fact $z = Bx \ne 0$.

Let us now proceed to Kneser's conjecture and its proof.

In 1955, Kneser proposed a class of graphs with no short odd cycles and with suspected large chromatic number.

Definition. For $n \geq 2m + 1$, the vertex set of Kneser's graph K(n,m) is $\binom{[n]}{m}$, the collection of all m-subsets of $[n] = \{1, 2, ..., n\}$. Two vertices $A, B \in \binom{[n]}{m}$ are adjacent iff $A \cap B = \emptyset$.

Observe that the Peterson graph is the Kneser graph K(5,2).

Setting n=2m+r $(r\geq 1)$, Kneser's graph has a legal coloring with r+2 colors: Take element 1 of [n] and assign color 1 to all m-subsets of [n] containing 1. Next, take element 2 of [n] and assign color 2 to all uncolored m-subsets of [n] containing 2. Proceed in this way until there are 2m-1 elements of [n] left. We have used (2m+r)-(2m-1)=r+1 colors. The $r+2^{nd}$ color is assigned to all m-subsets formed by the remaining 2m-1 elements (this coloring is valid since any two m-subsets contained in these 2m-1 elements intersect). A formal description of this procedure is given below.

Algorithm

- Step 1. Set $G_1 = K(n, m)$ and i = 1.
- Step 2. If i = r + 2, goto Step 4. Else, let V_i be the set of all vertices v of G_i such that the corresponding m-subset of v in [n] contains i. Color all vertices in V_i by color i.
- Step 3. Set $G_{i+1} = G_i V_i$ and i = i + 1, goto Step 2.
- Step 4. Color all vertices of G_{r+2} by color r+2, stop.

Kneser conjectured that r + 2 is the precise chromatic number in all cases. This conjecture was proved by Lovász, using a clever topological method, in 1978.

Theorem 16 (Lovász). The chromatic number of Kneser's graph K(2m+r,m) is r+2.

The following short proof is due to Bárány, which is based on Gale's theorem on how to distribute points evenly on a sphere (Theorem 15). The following theorem also plays an important role in the proof.

The Antipodal Lemma. If $U_1, U_2, \ldots, U_{r+1}$ are open sets in S^r that cover S^r , then some U_i contains an antipodal pair of points x, y, that is, x + y = 0.

Proof of Theorem 16. Suppose the contrary: K(2m+r,m) can be colored with r+1 colors. Let us fix such a coloring and let $G \subset S^r$ be a Gale-set of 2m+r points, i.e. a set with the property that every open hemisphere contains at least m points of G (recall Theorem 15). We construct open sets $U_1, U_2, \ldots, U_{r+1}$ in S^r as follows: $x \in U_i$ iff the open hemisphere centered at x contains m points which correspond to a vertex of K(2m+r,m) with color i. Clearly, $U_1, U_2, \ldots, U_{r+1}$ is a cover of S^r . From the antipodal lemma, it follows that some U_k contains a pair of antipodal points x and -x, which implies that there is a vertex of K(2m+r,m) with color k contained in the open hemisphere centered at x, there is another vertex of K(2m+r,m) with color k contained in the open hemisphere centered at -x. Since these two open hemisphere are disjoint, the two corresponding vertices are adjacent according to the definition of the Kneser graph, but they receive the same color k, a contradiction.

5° Miscellaneous Topics

(5.1) Helly's Theorems

A convex combination of the vectors $v_1, v_2, \ldots, v_m \in R^n$ is a linear combination $\sum_{i=1}^m \lambda_i v_i(\lambda_i \in R)$, where $\sum_{i=1}^m \lambda_i = 1$ and $\lambda_i \geq 0$. A convex set is a subset of R^n , closed under convex combinations. The convex hull of a subset $S \subseteq R^n$, denoted by $\operatorname{conv}(S)$, is the set of all convex combinations of the finite subsets of S. Clearly, S is convex iff $S = \operatorname{conv}(S)$. It also can be shown that S is convex iff it contains the straight line segment connecting every pair of points of S.

The dimension of a linear space over the reals has characterizations in terms of intersection properties of convex sets. The results, Helly's theorems, have a long history of analogues in combinatorics.

Theorem 17. If $C_1, C_2, \ldots, C_m \subseteq \mathbb{R}^n$ are convex sets such that any n+1 of them intersect, then all of them intersect.

Theorem 18. If $C_1, C_2, \ldots, C_m, K \subseteq \mathbb{R}^n$ are convex sets such that for any n+1 of C_1, C_2, \ldots, C_m , there exists $d \in \mathbb{R}^n$ for which K+d intersects all of them, then there exists $d^* \in \mathbb{R}^n$ such that $K+d^*$ intersects all $C_i's$.

Remark. The quantity n + 1 cannot be reduced in either theorem. For Theorem 17, consider the facets of a full-dimensional simplex.

Both theorems can be deduced from the following observation due to Radon.

Lemma (Radon). Let S be a set of $m \ge n + 2$ points in \mathbb{R}^n . Then S has two disjoint subsets S_1 and S_2 whose convex hulls intersect.

Proof. Let $S = \{s_1, s_2, \ldots, s_m\}$. Then $s_1 - s_m, s_2 - s_m, \ldots, s_{m-1} - s_m$ are linearly dependent as $m \ge n+2$. So there exist not all zero λ_i 's such that $\sum_{i=1}^{m-1} \lambda_i (s_i - s_m) = 0,$ or $\sum_{i=1}^{m-1} (\lambda_i s_i) + \lambda_m s_m = 0,$ where $\lambda_m = -\sum_{i=1}^{m-1} \lambda_i$. Note that $\sum_{i=1}^{m} \lambda_i = 0.$ Now let S_1 consist of those s_i with nonnegative coefficients λ_i and let $S_2 = S - S_1$. Separating the two

maybe
$$\forall j: Sj \in S$$
,
$$\sum_{s_i \in S_1} \lambda_i s_i = \sum_{s_j \in S_2} \mu_j s_j, \begin{cases} \text{LHS} : conv(S_i) \\ \text{RHS} : conv(S_i) \end{cases}$$
 (26)

where $\sum_{s_i \in S_1} \lambda_i = \sum_{s_j \in S_2} \mu_j$, $\lambda_i \geq 0$, $\mu_j > 0$ for each $s_i \in S_1$ and $s_j \in S_2$, and $S_1 \neq \emptyset \neq S_2$. Thus dividing each side of (26) by $\sum_{s_i \in S_1} \lambda_i$, we obtain a point in $\operatorname{conv}(S_1) \cap \operatorname{conv}(S_2)$. \square

Proof of Theorem 17. Assume first that m=n+2. Let a_i be a point in $\cap_{j\neq i}C_j$. Let $S=\{a_1,a_2,\ldots,a_m\}$. By Radon's lemma, S has two disjoint subsets S_1 and S_2 with intersecting convex hulls; let $w\in \operatorname{conv}(S_1)\cap\operatorname{conv}(S_2)$. We claim that w belongs to all C_i . Indeed, for each i,a_i belongs to at most one of S_1 and S_2 . Suppose, say $a_i\notin S_1$. $a_i\in S_n$. Then by the selection of a_i , we see that $S_1\subseteq S-\{a_i\}\subseteq C_i$. So $\operatorname{conv}(S_1)\subseteq C_i$ as C_i is convex. Hence $w\in C_i^{\forall i}$. This concludes the proof for m=n+2.

The general case follows by induction on m. For $m \leq n+1$, there is nothing to prove. Assume $m \geq n+3$. By the special case just proved, every n+2 of the C_i intersect. So every n+1 of $C_1, C_2, \ldots, C_{m-2}, C_{m-1} \cap C_m$ intersect. But then, by induction hypothesis, all intersect.

The proof of Theorem 18 is left as an exercise.

subsets of terms in the above equation, we obtain a relation

(5.2) The Matrix-Tree Theorem

Let T be a subgraph of a simple graph G. Call T a spanning tree of G if T contains n-1 edges and contains no cycles, where n is the number of vertices in G. The purpose of this section is to count the total number of spanning trees, k(G), in a given labeled graph G. For instance, there are 16 distinct spanning trees in labeled K_4 altogether as

(1) dynamy Inc. n = 9

spenning Ive Cambry Pashlem

Input A connected, labeled and simple graph G

Output k(G)

e.g. If K4 is labeled. Then k(G) = 16

If K4 is unlabeled, then 3 only 2 different

yenning Trees

shown below. So $k(K_4) = 16$.

Consider an arbitrary orientation D of G, which is a digraph obtained from G by assigning a direction to each edge of G.

Each directed edge in D is called an arc. If arc e is directed from u to v, then u is called the tail and v the head of e. Suppose the vertex set of D is $\{v_1, v_2, \ldots, v_n\}$ and the arc set is $\{e_1, e_2, \ldots, e_m\}$. The $incidence\ matrix\ A = (a_{ij})_{n \times m}$ of D is defined by

$$a_{ij} = \begin{cases} 1 & \text{if } v_i \text{ is the tail of } e_j; \\ -1 & \text{if } v_i \text{ is the head of } e_j; \\ 0 & \text{otherwise.} \end{cases}$$

Notice that $rk(A) \leq n-1$ as the rows of A sum up to zero. Let A_0 be a matrix obtained from A by removing an arbitrary row. We shall establish the following.

Theorem 19 (The Matrix-Tree Theorem). The total number of spanning trees in G, k(G), equals $\det(A_0A_0^T)$.

The proof relies heavily on the following lemma.

Lemma 19.1. Let B be an $(n-1) \times (n-1)$ submatrix of A_0 . Then

$$\det(B) = \begin{cases} \pm 1 & \text{if the spanning subgraph H consisting of all the edges} \\ & \text{corresponding to columns in B is a spanning tree of G;} \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Without loss of generality, we assume A_0 is obtained from A by deleting n^{th} row.

Let us prove by induction on n. For n = 2, the assertion is trivial. So we proceed to the induction step, and distinguish between two cases.

Case 1. Some v_i , with $i \neq n$, has degree 1 in H.

According to the definition of the incidence matrix, the i^{th} row of B contains exactly one nonzero entry, ± 1 , and all other entries in this row belonging to B are zero. Now expand $\det(B)$ by this row. The resulting $(n-2)\times (n-2)$ determinant $\det(B')$ will correspond to $H-v_i$ in the same way as $\det(B)$ does to H, because H is a spanning tree of G iff $H-v_i$ is a spanning tree of $G-v_i$ and $|\det(B)| = |\det(B')|$. The desired statement follows from the induction hypothesis.

\triangleright Case 2. No vertex of H has degree 1, except possibly v_n .

Since H contains n-1 edges in total, by the handshaking theorem, there exists a vertex v_j which has degree zero in H. If $v_j \neq v_n$ then the row of B corresponding to v_j is a zero vector, and hence $\det(B) = 0$; if $v_j = v_n$ then each column of B contains a 1 and a -1. So the sum of all rows of B is 0, implying $\det(B) = 0$.

To prove the theorem, we also need the following well-known formula about the determinant of the product of two matrices.

Binet-Cauchy Theorem. If Q and R are $k \times m$ and $m \times k$ matrices, respectively, with k < m, then the determinant of the product

$$\det(QR) = \sum_{\substack{I \subseteq \{1,2,\dots,m\}\\|I|=k}} \det(Q_I) \cdot \det(R_I),$$

where Q_I (resp. R_I) is the $k \times k$ submatrix of Q (resp. R) determined by the columns (resp. rows) in I.

Proof of Theorem 19. According to the Binet-Cauchy theorem, we have

$$\det(A_0 A_0^T) = \sum \det(B) \cdot \det(B^T),$$

where B ranges over all $(n-1) \times (n-1)$ submatrices of A_0 . From Lemma 19.1 we see

$$\det(B) \cdot \det(B^T) = \begin{cases} 1 & \text{if } B \text{ corresponds to a spanning tree,} \\ 0 & \text{otherwise.} \end{cases}$$

Hence
$$k(G) = \det(A_0 A_0^T)$$
.

To facilitate easy computation, let us give an explicit description of $A_0A_0^T$:

the
$$(i, j)$$
 entry of $A_0 A_0^T \equiv \begin{cases} \text{the degree of } v_i \text{ in } G & \text{if } i = j; \\ -1 & \text{if } v_i \text{ and } v_j \text{ are adjacent}; \\ 0 & \text{otherwise.} \end{cases}$

Theorem 20 (Cayley). $k(K_n) = n^{n-2}$.

Proof. Let v_1, v_2, \ldots, v_n be the vertices of K_n and let A_0 correspond to $v_1, v_2, \ldots, v_{n-1}$. Then

$$A_0 A_0^T = \begin{pmatrix} n-1 & -1 & \dots & -1 \\ -1 & n-1 & \dots & -1 \\ \vdots & \vdots & & \vdots \\ -1 & -1 & \dots & n-1 \end{pmatrix}_{\substack{(n-1)\times(n-1)}} - \mathcal{T} * n \mathcal{I}$$

Since $\det(A_0A_0^T) = n^{n-2}$, the statement follows from the matrix-tree theorem.

 $3\dot{2}$

in page 31. for case >

Handshaking Thm det
$$G = (V, E)$$
 be a graph. Then
$$\sum_{(V, V)} d_{G}(V) = 2 |E|.$$

Assume the contrary: $d_H(u_i) > 1 \ \forall \ i \le n$ and $d_H(u_i) \neq 1 \ \forall \ i \le n-1$. Then $d_H(u_i) > 2 \ \forall \ i \le i \le n-1$.

$$2(n-1) = 2 \left| E(H) \right| = \sum_{i=1}^{n} d_H(u_i) > 2(n-1)+1,$$
a contradiction.

Binet - Cauchy theorem

$$Q = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 1 & 2 \end{bmatrix}_{2X3}, \qquad A = \begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}_{3X2}$$

$$QR = \begin{bmatrix} 7 & -1 \\ 1 & 4 \end{bmatrix}$$

· let
$$(QR) = 29$$
.

$$\sum_{I \subseteq [3]} \det(Q_I) \cdot \det(R_I)$$

$$= \left| \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} \cdot \left| \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix} + \left| \begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix} \cdot \left| \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} \right| + \left| \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \cdot \left| \begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix} \right|$$

(i.j) entry of
$$A_0A_0^T = a_0^T a_j = \sum_{k=1}^m a_{ik} \cdot a_{jk}$$
 (*)

1. if $i=j$, then $*=\sum_{k=1}^m a_{ik} \cdot a_{ik} = \sum_{k=1}^m a_{ik}^2$

of nonzero entries in row i of A_0

2. if $i \neq j$, then $a_{ik} \cdot a_{jk} \neq 0$

if and only if $a_{ik} = 1$, $a_{jk} = -1$ or $a_{ik} = -1$, $a_{jk} = 1$

if and only if $a_{ik} \cdot a_{jk} = -1$

if and only if e_j is an edge between v_i and v_j

since G is a simple graph, \exists at most one

edge between vertices v_i and v_j

so $* \Rightarrow 0$ if and only if \exists exactly one k with

 $1 \leq k \leq m$ such that $a_{ik} \cdot a_{jk} = -1$

if and only if $(*) = -1$