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So |[A(G) = M| = —|I = ST| = (A —1)3(A = 3)(A +2)* and thus the eigenvalues of A(G)

are as described above. O
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(2.1) Decomposing K Into Petersen Graphs N
4
_5 ( Theorem 6 (Schwenk). The complete graph on 10 vertices, Ky, cannot be expressed as
0| b the edge disjoint union of three copies of the Petersen graph.
Rteowa| 15 The following theorem taken from linear algebra will play an important role in our
proof.
Lemma 6.1. Let A € R™"™ be a symmetric matriz, let X\, Xa, ..., be all distinct
eigenvalues of A, let m; be the multiplicity of A; as an eigenvalue of A, and let V; = {z €
RivAw=2Xax} forii==1y2pmwuyks Then the following statements hold:
\« & »?: 35 t‘ (a) For any 1 <i# j <k and any x; € V;, z; € V; , we have x;frxj =0.
CEAL “fitf;;?,(b) dim(V;) =m; fori=1,2,... k.
- -t NS
) 2r 258 .
B S0 A0 W 2 Proof of Lemma 6.1. (a) Notice that Nak @y = (M) ap = (Azy) T ay = o (Axj) =
SEEN zl(\jz;) = Njazlzj. So (A — \)zlz; = 0, implying =l z; = 0.
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Definition: Let U, W be subspaces of V. Then V is said to
be the direct sum of U and W, and we write V. =U & W, if
V=U+W and UnW = {0}.

Lemma: Let U, W be subspaces of V. ThenV = U@W if

and only if for every v € V there exist unique vectors v € U and
Ve O 1IN AN N w € W such that v =u+w.

WO Xem\\J€, = M

(b) Supp(;se 0 =1 +x2+ ...+ x, where x; € V; for each 7. Then we have
i (v + ...+ m) = 0 and so zl'z; = 0 by (a), which implies z; = 0. It follows that
Vi4+Vo+...+V,is adirect sum; that is, Vi +Vo+ ...+ Ve =ViaVo®d...& V.

Since A is symmetric, it can be diagonalized as depicted in the above figure by using

a certain orthogonal matrix P. So the (my +...4+m;_1 + D", ... (my+ ... +mi_1 +
my;)* columns of P are independent vectors in V;, implying dim(¥;) > m;. Note that
VieoVod ... Vi C R" we thus have dim(V; & ... & Vi) < dim(R™) = n. Hence
k k
n > Y dim(V;) > > m; = n. It follows that dim(V;) = m; for each . O
i=1 i=1
matree ol oterton  orabn <5 Summelnrdc
Now we are ready to provesSchwenk’sstheoremn N ) _ vood v
anX L ¢S eceenvector corredbonseno
Proof of Theorem 6. Since each vertex of the Petersen graph has degree 3, we have J (

(a) Let A be the adjacency matrix of the Petersen graph. Then A -1 =31, where
1=(1,1,...,1)7T.
‘(; ~ 1= Suppose to the contrary that K¢ can be expressed as the edge disjoint union of three
Petersen graphs. Let us fix alabeling 1,2,...,10 of the vertices of Kyy. For this labeling,
let Ay, Ay, Az be the adjacency matrices of these three copies, respectively. Then

—tt D) nxn

n=lp, J=Tek J—1=A41+ A+ 4s. (6)

(b) Let V; = {z € R'" : A;x = 2} be the eigenspace of A; corresponding to 1. Then
e Vjisasubspace of W ={z € R : 1Tz =0}; =~ :
e dim(V;) = the multiplicity of 1 as an eigenvalue = 5.

(Indeed, the first statement follows from (a) and Lemma 6.1(a), and the second follows
from Example 6.2 and Lemma 6.1(b).)

Since dim(W) = 9, by the dimension formula dim(V; N V5) = dim(V;) + dim(Va) —
dim(V;, + Vo) > 5+ 5 — dim(W) = 1. So there exists a nonzero vector z in V4 N Va.
By the definition of V; and by (b), A1z = 2z, Asz = z, and 172 = 0. Thus Jz = 0 or
(J—1)z=—z. In view of (6), (J —I)z = (A1 + Ay + A3)z, which implies A3z = —3z.
Hence —3 is an eigenvalue of Aj, contradicting Example 6.2. O

Our next two examples illustrate the role eigenvalues play in the study of graphs

displaying high degree of regularity. We need to start with some more graph terminology.

Let G be a graph. A eyecle of length k,; denoted by Cy, in G is a sequence of k distinct
vertices (a1, ag, ..., ay) such that a; is adjacent to a;+1,1 < i < k, where axy1 = a;. The

-~ girth of a graph G is the length of its shortest cycles. The complement of GG, denoted by
G, is another graph with the same vertex set and complementary edge set: ij is an edge

of G iff i and j are nonadjacent in G. A vertex v is called a neighbor of vertex w if u and
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v are adjacent in G. The degree of u, denoted by d(u), is the number of all neighbors of
w. We say that G is reqular if all vectices of G have the same degree.

(2.2) The Friendship Theorem

Suppose in a group of people we have the situation that any pair of persons have
precisely one common friend. The friendship theorem states that there is always a person

(the “politician”) who is everybody’s friend.
Let us rephrase the theorem in graph-theoretic terms.

Theorem 7 (The Friendship Theorem). Suppose that G is a graph in which any two
vertices have precisely one common neighbor. Then there is a vertex which is adjacent

to all other wvertices.

Note that there are graphs with this property as in the following figure, where u is
the politician; in fact we shall show that these “windmill” graphs are the only graphs
with this property.

N

N . N . - . enatn F‘
' . ) ) ) i
! ~ o I , . N Vo vV Vs Vi v
the “reencSaco theorem (COGLDLITIDRM
J J Yy oy -
J 2 N
n - ) § 1 g) < t‘-o ; { , 't 2 + '153
) ; 3 \.0Tz¢q § ‘-Oneclure Cet 55
Jet U pe a arann o whien I
v ‘ J~"‘ J..‘ i 1 A ,q)&- N / '
o y then there o INU/[ ex<8t arapns weth
enac L‘.'/ one Da JA,Q o7 \?flf""ﬂ 7. {nen °* ’ ¥ y
v ]
. the property that between any 3 vertices
T 42 a wenom<ll graon ol !
i . , - .
J - i _ n ) )
v = orecesey one potn or ength

v o y

Lmath i = ogoee A windmill graph

U

Proof. Suppose the contrary: no vertex of GG is adjacent to all other vertices. To
derive a contradiction we proceed in two steps. The first part is combinatorics, and the
second part is linear algebra. Observe that the condition of the theorem implies that G
contains no Cy4. Let us call this the Cy-condition. < 1

We claim that

(a) G is a regular graph, that is, d(u) = d(v) for any two vertices u,v in G.

To justify this, we first consider the case when u and v are nonadjacent in G. Suppose
d(u) = k and wy, we, ..., wy are the neighbors of u. Since any two vertices have precisely
one common neighbor, exactly one of the w;, say wy is adjacent to v (using the pair
{u,v}), and wsy is adjacent to exactly one of the other w/s (using the pair {u,ws}), say
wy. The vertex v has with w; the common neighbor ws, and with w;(¢ > 2) a common

neighbor z;(i > 2). By the Cy-condition, all these z/s must be distinct. The situation is

13



as shown below.

We thus conclude that d(v) > k = d(u) and hence d(u) = d(v) = k by symmetry. To
finish the proof of (a), observe that any vertex different from ws is nonadjacent to u or v,
and hence has degree k, by what we have just proved. But since ws has a non-neighbor
by assumption, it has degree k as well, and thus G is k-regular, so (a) holds.

Let uw be a vertex of G and let wy,wo, ..., w; be all the neighbors of u. Once again

since any two vertices have precisely one neighbor in common, we have

(i) Each w; has precisely one neighbor in {wi,ws,...,wi}, and thus has precisely

k — 2 neighbors outside {wjwy, w3, ..., wy}; and
(ii) Each vertex outside {u, w1, ..., wx} is a neighbor of some w;.  ~opirior n 2lahbor of et
Using the Cy-condition, we also have ¢
(iii) The neighbors of wy, wa, ..., wy outside {u, w1, ..., wy} are all distinct. “ )
Combining (i), (ii) and (iii), we deduce that - 3 b e S
(b) The total number of vertices of G is n = (k — 2)k +k+1=k?—k+1. w

Let us now complete the last part of the proof.
Note first that & must be greater than 2, for otherwise only G = K; and K3 are
possible by (b), both of which are trivial windmill graphs. Consider the adjacency

matrix A of G, we obtain

e Each row has exactly &k 1’s by (a), which implies that
A1l = k1 and so k is an eigenvalue of A. (7)

e For any two rows there is exactly one column where they both have a 1, by the

condition of the theorem.

Hence
ko1 1
1 k£ ... 1
A2 = =kI+(J-1). (8)
1 1 k

14



According to Example 6.1, J — I has the eigenvalues n — 1 (of multiplicity 1) and —1 (of
multiplicity n — 1). So, by (8), A% has the eigenvalues k — 1+ n = k? (of multiplicity 1)
and k — 1 (of multiplicity n — 1).

Since A is symmetric, there exists an orthogonal matrix P such that

A 0
A=PT N P,
0 An
where A1, Ag, ..., A, are all eigenvalues of A. Hence
2 0
A*=pT & P.
0 A2

n

Hence each A7 is an eigenvalue of A% So we conclude that
(c) A has the eigenvalues & (of multiplicity 1) and vk — 1. (In view of (7), k is an

eigenvalue.)

Now let r stand for the multiplicity of vk — 1 and s for the multiplicity of —v/k — 1.

Since the sum of the eigenvalues of A equals the trace (which is 0), we find

k+r-vVk—1—svVk—1=0, f L = 0.

in particular r # s, and so vk — 1 = k/(s —r). It follows that vk — 1 is an integer h (if

/m is rational, then it is an integer! where m is an integer). So
h(s—r)=k=h?+1.

Since h divides h? + 1 and h?, we find that h must be equal to 1, and thus k& = 2, which

we have already excluded. So we have reached a contradiction. O
(23) M:Q aree J ,; 2 Len )"';” 2 " “",“ (‘,\\"'J:\‘l‘

Let us consider regular graphs of girth 5, what is the minimum possible number of

vertices such a graph can have, if the degree of each vertex is r?

Take a vertex u. It has r neighbors. Each of these r neighbors has » — 1 additional
neighbors. We have had 1 +7 + r(r — 1) = 72 + 1 vertices so far, since they must be
distinct for otherwise a cycle of length < 4 would arise. It is a natural question to ask:

do we need even more vertices? Let us see. For r = 2, we have r2 4+ 1 = 5 vertices, and
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there is the pentagon (i.e. C5). For r = 3, we have r? + 1 = 10 vertices, the Petersen

graph is as desired, it can also be shown that the resulting graph is unique.

Can we construct these kinds of graphs for r > 47
Theorem 8 (Hoftman-Singleton). If a reqular graph of degree v and girth 5 has r° + 1
vertices, then r € {2,3,7,57}.

Proof. Let G be a regular graph of degree r and girth 5 that has 2 + 1 vertices, let
A be its adjacency matrix, and let A be the adjacency matrix of G, the complement of
G. Then

I+A+A|=J e (9)

For any two vertices i, j of GG, observe that 4, j have no neighbor in common if ij
is an edge of G and i, 7 have precisely one common neighbor if 4, j are nonadjacent in
G. To justify this, note that in the former case, we would have a triangle otherwise,

contradicting the girth; in the latter case, note that 4 has r neighbors, each of which has

R r — 1 additional neighbors. We have had 1 +7+7(r —1) = r2 4 1 distinct vertices so far.
_ So there exists a neighbor k of ¢ such that j and k are adjacent. Clearly k is the only
. ‘a ! common neighbor of i, j, otherwise we would have a cycle of length 4.
¢ b ) Now consider 42 = (Bij). Then B;; = r and B;; = the number of common neighbors
.C of 4, j whenever ¢ # j. According to the statement in the preceding paragraph, £;; = 0
if 45 is an edge of G and 1 otherwise. It follows that
A2=rI+ A (10)
Combining (9) and (10), we obtain
A2+ A—(r—=DI=J. (11)
Since G is r-regular, A1 = r1, where 1 = (1,1,...,1)T. So 1 is an eigenvector of A
corresponding to eigenvalue r. Since A is a symmetric matrix, there exists an orthogonal
matrix Q such that QT AQ = A, where
e A is a diagonal matrix whose diagonal entries are eigenvalues;
e () consists of eigenvectors of A;
e the first column of @ is 1/y/n (so the (1,1)-entry of A is r).
Let A be the eigenvalue of A which is the (i,7)-entry of A, where i > 2, and let e be the
it" column of Q. Then Ae = e and 17e = 0. Multiplying each side of (11) by e, we get
b Summetdree so je=0
Me+ e — (r—1)e=0,
implying
Mpde=(r=1)=10.
This equation has two roots
‘tll,wrem : Pm,'nu,'\])uﬁ Axﬂ tlltuzrm 16
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. 7L';\, O
e AQ=|:O J

must can be ogia_gonaﬂ
tﬁn,stemﬂ af jyr«ﬂm varm

Ao = %(—11\/—47«—3). (12)

Let m; be the multiplicity of \;, i« = 1,2. The sum of these multiplicities is n = 2 + 1.
So, not forgetting the eigenvalue 7, we have

l+mi+ma=n=r?+1 (13)

Recall that the sum of the eigenvalues is equal to the trace of the matrix, that is, the
sum of the diagonal elements. Hence

r 4+ miAL + maig = 0. (14)
Plug (12) into (14), we have
2r — (m1 + ma) + (my — ma)s =0,
where s = v/4r — 3. Using (13), this changes to
2r —r2 + (mq — mg)s = 0. (15)

Notice that s is the square root of a positive integer, so either it is a positive integer, or
it is irrational. In the latter case, by (15), m1 — mso must vanish, and thus 2r — r% = 0.
Since r # 0, we have r = 2, which is the case of the pentagon (i.e. Cj).

We may assume s is a positive integer hereafter. Let us express r through s, i.e.
r = (s% + 3)/4. Plug it into (15), we get

st — 252 — 16(my — ma)s — 15 = 0. (16)

Therefore, by (16), s divides 15, and so its possible values are 1,3,5 and 15. From these
we obtain the respective values r = (s + 3)/4 = 1,3,7,57. We discard the value 1 as
r > 2; the rest is the list of possibilities in addition to r = 2. O

Hoffman and Singleton managed to construct a regular graph of girth 5 and degree
7 with 50 vertices. However the case r = 57 is still undecided, although computers have
been used to aid the search.

Beautiful graphs are rare, and so are gems like this proof.

(2.4) Eigenvalues and Chromatic Numbers

A graph G is said to be k-colorable if there is an assignment of colors, 1,2,...,k, to

the vertices so that no two adjacent vertices have the same color. The chromatic number
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of G, denoted by x(G), is the smallest £ for which G is k-colorable.

X=3 X =4

Theorem 9. Let A(G) be the adjacency matriz of a graph G and let A1 be the mazimum
eigenvalue of A(G). Then
X(G) <14 A

Theorem 10. Let G be a graph with n vertices and with at least one edge, let A be a
nonzero symmetric n X n. matrix such that A(i, j) = 0 whenever i and j are not adjacent,

and let Ay > o > ... > A\, be eigenvalues of A. Then
x(@) >1- 2L, (17)

n

To prove the above two theorems, we need the following result.

N3 5{\_1?_ The Interlacing Theorem. Let A be an n x n symmetric matriz with eigenvalues

A > X > ... >\, let N be an m x n matriz such that NNT = I, (so m < n), let
B = NAN', and let j11 > pig > ... > i, be eigenvalues of B. Then the eigenvalues of
B “interlace” those of A; that is

Ai > i 2 Aoy for  i=1,2,...,m. O

Remark. In particular, the statement holds if B is a symmetric submatrix of A.

xl Ax

Proof of Theorem 9. Since A(G) is symmetric, A} = max —= Let d denote
z#0 T X

the minimum degree of G. Then A(G)-1 > d -1 (i.e. each entry of A(G) -1 > the
corresponding entry of d - 1) and so 17 A(G) -1 > d171. Hence

T AG)x _ 1TA(G)1
= >
M Iil;%(}){ Iz — 171

>d. (18)

Now let us prove the assertion by induction on the number of vertices in G. Let v
be a vertex of minimum degree d. In view of (18), d < m — 1, where m = [A1| + 1. Now
consider G — v, the graph obtained from G by deleting vertex v. Let \| be the largest
eigenvalue of A(G —v). Since A(G —v) is a symmetric submatrix of A, the above remark
implies that Aj < Ay.
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By induction hypothesis x(G —v) <1+ X} <1+ A1, so x(G —v) < m. Let us color
G — v using m colors. Since the degree of v is d < m — 1, there exists a color which is not
assigned to any neighbor of v; clearly this color is valid for v. Thus y(G) < m < 1+ Aq,

as desired. O

n

( Proof of Theorem 10. From the hypothesis it can be seen that the diagonal entries
of A are zero, so the trace of A is zero, and thus Ay + Ao + ...+ A, = 0. Note that the
only symmetric matrix with all its eigenvalues equal to zero is the zero matrix (why?),
we have A\; > 0 > \,,. Hence the RHS of (17) is well defined.

Suppose G can be properly colored with m colors. Since A is symmetric, permute
the rows and columns in the same way if necessary, we may assume that the color classes
induce a partition of A as shown below, where A;; is the submatrix of A consisting of

the rows indexed by the vertices of color i and columns indexed by the vertices of color

I

Ay A .. A o A 7o Js
Ao1 Az ... A [ G ,
A= T A ¢ 3R B e O
LA § B2 3 5 e
Api Ao ... A 7' R SN ® v Y, LR

Since there is no edge between any two vertices of color i, according to the hypothesis

on A, we have A; =0fori=1,2,...,m.

Let e be an eigenvector of A corresponding to A1 and write e = (el ... el )T where

e; has coordinates indexed by the vertices with color 7. If none of €s is zero, set

1 T 0

N = [le2]| ‘ : (19)

0 el
llem | =m |

Y2 ap Do mxn

otherwiée, let N be the matrix obtained from the RHS of (19) by deleting all the rows
corresponding to e; = 0. Since the latter case goes along the same line as the former, we
assume, without loss of generality, that the former case occurs.

Set B= NAN'. Then B is an m x m matrix whose (4, j)-entry is
1

el

1 1

T T

e; Aji e; = e; Ajies.
v llesll ! leill - llesll ™ v

In particular, B;; = 0 as A;; = 0 for each i. So trace (B) = 0.
Note that

B(HeIHa oo o ||em||)T = NANT(HelHa 2o oo ||emH)T = NAe = MNe = >‘1(Hel||a Yooy ||€mH)T,

so A1 is an eigenvalue of B.
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Now let i1 > pig > ... > i, be eigenvalues of B. Since NN = I, by the interlacing
theorem, s interlace eigenvalues of A and hence they are between A\; and \,. Observe
that pu1 = Ay according to the statement in the preceding paragraph. So

0=trace (B) =p1 +po+ ...+ pm > A\ + (m—1)\,,

completing the proof. O

Let w(G) stand for the number of vertices of a largest complete subgraph in G, and
let U(G) be the set of symmetric n x n matrices A such that A(é,j) = 0 if i and j are
not adjacent in G. Suppose further that C' C V(@) induces a complete subgraph of G.

Let Ac denote the n x n matrix with (4, j)-entry equal to 1 if ¢ and j are two vertices
A (A
in C' and 0 otherwise. Then A € U(G) and it can be shown that 1 — % =|C|.
n\C

Using Theorem 10, we thus obtain

x(G) = Ag&g)(l = An(A)) > w(G). (20)

Inequality (20) is one of a number of important results obtained by Lovéasz in his work
on the Shannon capacity of a graph; it also serves as the starting point of polynomial-
time algorithms for several optimization problems on perfect graphs by Grotschel, Lovész

and Schrijver.

3° Polynomial Technique

In order to apply the linear algebra method, in many situations it is particularly useful
to associate sets with some multivariate polynomials f(z1,x2,...,z,) (rather than with
their incidence vectors) and then show that these polynomials are linearly independent
as members of the corresponding functional space. The idea, known as the polynomial
technique, has many applications in discrete mathematics. Let us present some of them.

All these applications are based on the following lemma.

Lemma (Triangular Criterion). Fori=1,2,...,m, let f; :  — F be a function, where
Q is an arbitrary set and F is a field, and let a; € ) be such that

) A

§ e

=
S U Y
Then f1. fa.. .., fm are linearly independent over F. " “*{

Proof. For a contradiction, assume that there exist not all zero \; € F such that

Aifi = 0. Let j be the smallest ¢ with A\; # 0. Substitute a; for the variable on each

=1 4. o I
r U

side. By (21), all but the j* term vanish, and what remains is Ajfilaj) = 0. This, again
by (21), implies A\; = 0, contradicting the choice of j. O



