
Notes on algebraic combinatorics

Galobel Wang

The University of Hong Kong

May 2025

Abstract

This article consists of some notes taken by the author while studying algebraic

combinatorics.
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1 Some motivating results in combinatorics

We start by presenting two results which are special cases of the Heron-Rota-Welsh

conjecture and the Dowling-Wilson conjecture.

1.1 The read conjecture

Given a graph G and a positive integer t, a proper coloring of G is an assignment

of one of t-colors to each vertex of G such that the two endpoints of each edge are

assigned different colors. The chromatic polynomial of G is defined to be the total

number of proper colorings as a function of t, denoted by PG(t).

Example 1.1. • When G has a loop, PG(t) = 0.
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• When G is a connected tree with n-vertices, PG(t) = t(t− 1)n−1.

• When G is the complete graph on n vertices, PG(t) = t(t− 1) · · · (t− n+ 1).

The chromatic polynomial satisfies the following deletion-contraction relation.

Lemma 1.1 (deletion-contraction). Given any edge e of G, we have

PG(t) = PG\e(t)− PG/e(t),

where G \ e and G/e are the graphs obtained from G by deleting and contracting the

edge e, respectively.

Using inductions on the number of edges, one can easily deduce the following prop-

erties from the deletion-contraction relation.

Corollary 1.1. • For any loopless graph G, the chromatic polynomial PG(t) is a

monic polynomial.

• The coefficients of PG(t) are alternating, that is, if PG(t) = tn+a1t
n−1+ · · ·+an,

then (−1)iai ≥ 0.

The following result of Huh confirms the Read conjecture from the 60’s.

Theorem 1.1 (Huh, 2012). The (absolute values of the) coefficients of PG(t) form log-

concave sequence. In other words, if PG(t) = tn+a1t
n−1+· · ·+an, then |ai−1ai+1| ≤ a2i .

Remark 1.1. In fact, the sequence |a1|, . . . , |an| has no internal zeros (which follows

from Huh’s proof, but is also a previously known result). Obviously, among the nonzero

terms, |ai−1ai+1| ≤ a2i is equivalent to log |ai| being concave. For the rest of the note,

when we say a sequence ak is log-concave, we mean the sequence |ak| has no internal

zeros, and |ak−1ak+1| ≤ a2k for all k.

1.2 The realizable Dowling-Wilson conjecture

Let V be a d-dimensional vector space over a field, and let E ⊂ V be a finite

generating set. Let

F = {all linear subspaces of V generated by a subset of E},

and Fk = {F ∈ F | dimF = k}. Denote the cardinality of Fk by Wk. The sequence of

numbers Wk are called Whitney numbers of the second kind. The following result

confirms a conjecture of Dowling-Wilson in the realizable case.

Theorem 1.2. Let Wk be defined as above. For k ≤ d/2, we have Wk ≤ Wd−k.
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It turns out that for both theorems, the proofs essentially use algebraic geometry.

In fact, the first theorem reduces to the Hodge index theorem, and the second reduces

to the hard Lefschetz theorem for projective varieties.

Both statements can be generalized to matroids, where the corresponding variety

may not exist. Then the key idea is to produce some combinatorial proofs of the

analogous statements (Hodge index theorem, or more generally the Hodge-Riemann

relations, and the hard Lefschetz theorems) on some combinatorial cohomology ring of

matroids (or Chow rings, or intersection cohomology groups).

2 Introduction to matroids

2.1 Definations of matroid

Definition 2.1 (independent set). In graph theory, an independent set, stable set,

coclique or anticlique is a set of vertices in a graph, no two of which are adjacent.

Definition 2.2. Given a finite set E in a vector space, we can consider the independent

sets of E, defined as

IE = {I ⊂ E | I is an independent set}.

Definition 2.3. Given a graph G with edge set E(G), we can define the set of forests,

IG = {I ⊂ E(G) | I does not contain a cycle}.

The set of independent sets and forests share a common combinatorial property,

called the exchange lemma.

Lemma 2.1 (Steinitz exchange lemma). Let U and W be finite subsets of a vector space

V . If U is a set of linearly independent vectors, and W spans V , then:

1. |U | ≤ |W |;

2. There is a set W ′ ⊆ W with |W ′| = |W | − |U | such that U ∪W ′ spans V .

Lemma 2.2 (exchange lemma). Let IE be defined as above. If I1, I2 ∈ IE satisfies

|I2| > |I1|, then there exists x ∈ I2 such that I1 ∪ x ∈ IE1. The same statement holds

for the set of forests IG.

Matroid is the combinatorial structure that captures the independence conditions

from both linear algebra and graphs.

Definition 2.4 (matroid). A matroid consists of a finite set E and a collection of

subsets I ⊂ 2E, satisfying the following properties.

1Throughout this note, we abuse notations and use the element x to also denote the singleton set{x}.
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1. ∅ ∈ I;

2. if I ∈ I and I ′ ⊂ I, then I ′ ∈ I;

3. if I1, I2 ⊂ I and |I1| < |I2|, then there exists x ∈ I2 such that I1 ∪ x ∈ I.

The sets in I are called independent sets.

When E is a finite subset of a vector space, the independent sets IE defines a

matroid.

There are many other equivalent definitions of matroids in terms of flats, rank func-

tions, closure operators, bases, basis polytopes, etc. Here, we mention a few.

Definition 2.5. A matroid is a pair (E,B), where E is a finite set and B ⊂ 2E,

satisfying the following properties.

1. B is nonempty;

2. If A,B ∈ B and x ∈ A \B, then there is y ∈ B \A such that (A \ x) ∪ y ∈ B.

The sets in B are called bases.

Definition 2.6. A matroid is a pair (E,F), where E is a finite set and F ⊂ 2E,

satisfying the following properties.

1. F is nonempty;

2. if F1, F2 ∈ F , then F1 ∩ F2 ∈ F ;

3. given any F ∈ F , every element of E \F is in exactly one minimal set in F which

strictly contains F .

The sets in F are called flats.

Remark 2.1. For any pair of flats F,G of a matroid M , there exists a unique minimal

flat that contains both F and G, which is called the join of F and G, and denoted by

F ∨G. There also exists a unique maximal flat that is contained in both F and G, which

is called the meet of F and G, and denoted by F ∧ G. Clearly, F ∧ G = F ∩ G, but

F ∪G ⊂ F ∨G and the inclusion can be strict.

Remark 2.2. When E is a finite subset of a vector space V , the set of flats

F = {W ∩ E | W ⊂ V is a linear subspace}

defines a matroid.

Definition 2.7. A matroid is a pair (E, rk), where E is a finite set and rk : 2E → Z≥0

satisfying the following properties.
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1. for any S ⊂ E, rk(S) ≤ |S|;

2. if S ⊂ T ⊂ E, then rk(S) ≤ rk(T );

3. the function rk is submodular, that is,

rk(S) + rk(T ) ≥ rk(S ∪ T ) + rk(S ∩ T )

for any S, T ⊂ E.

The function rk is called the rank function.

Remark 2.3. When E is a finite subset of a vector space V , rk(S) = dim span(S)

defines a matroid.

Definition 2.8. Let M be a matroid defined over a set E using one of the above

equivalent definitions. Then E is called the ground set of M . The rank of M is

defined to be rk(E), and also denoted by rk(M). An element i ∈ E is called a loop if

rk(i) = 0, which is equivalent to that i is not contained in any independent set, and is

further equivalent to that i is contained in every flat. Two elements i, j ∈ E are called

parallel, if rk(i) = rk(j) = rk({i, j}) = 1. If a matroid has no loops, then we say it is

loopless. If a matroid has no loops or parallel elements, then we say it is simple. An

element i ∈ E is called a coloop if rk(E \ i) = rk(E)− 1, or equivalently, i is contained

in every basis.

Example 2.1. A uniform matroid on E = {1, . . . , n} with rank r, denoted by Ur,n,

is a matroid whose bases are all r-element subsets of E. When r = n, the matroid Un,n

is called a Boolean matroid.

Definition 2.9. A matroid defined using trees in a graph as discussed before is called a

graphic matroid. Given a field K, a matroid defined by a finite subset E in a K-vector

space V is called realizable over K. A matroid realizable over some field K is called

realizable. A finite set E in a vector space V is called a vector configuration.

Proposition 2.1. A graphic matroid is realizable over any field.A graphic matroid is

realizable over any field.

Proof. Given a finite graph G, we label its vertices by 1, 2, . . . , n. Fixing any field

K, we let V be the K-vector space with basis v1, . . . , vn. Let the set of edges be

E = {e1, . . . , em}, and assume that the two ends of each ei be ai, bi ∈ {1, . . . , n}. Now,

we choose the subset EV ⊂ V to be {vai
− vbi | i = 1, . . . ,m}. Then it is easy to check

that a subset of E form a forest if and only if the corresponding set of vectors in V are

independent.

Remark 2.4. As in the above proof, the subset E does not generate V . In fact, the

codimension of span(E) is equal to the number of connected components of G.
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Example 2.2. The fano matroid, defined as in the following picture 1, is realizable

over any field of characteristic 2, and not over any other characteristics.

Figure 1: fano matroid

Example 2.3. The non-Pappus matroid, defined as in the following picture 2, is not

realizable over any field.

Figure 2: non-Pappus matroid

2.2 Matroid operations

Given a matroid M and an element e in the ground set E, we can form two new

matroids M \ e and M/e, the deletion and contraction of e. They corresponds to the

deletion and contraction of an edge in a graph.

Definition 2.10 (deletion matroid and contraction matroid). Let M be a matroid

with ground set E. For any e ∈ E, we define the deletion matroid M \ e to be

the matroid on E \ {e} with rank functions rkM\e(S) = rkM (S) for any S ⊂ E. We

define the contraction matroid M/e to be the matroid on E \ {e} with rank function

rkM/e(S) = rk(S ∪ {e})− r(e).

Remark 2.5. Equivalently, the deletion and contraction can be defined using indepen-

dent sets:

IM\e = 2E\{e} ∩ IM

and

IM/e = {I ⊂ E \ e | I ∪ {e} ∈ IM}.

Remark 2.6. If e is a loop, then M \ e = M/e, whose flats are naturally bijective the

the flats of M . If e is not a loop, then rk(M/e) = rk(M) − 1. On the other hand, if e

appears in every basis (in this case, e is called a coloop), then rk(M \ e) = rk(M)− 1;

otherwise, rk(M \ e) = rk(M).
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Definition 2.11. Given a flat F of a matroid M , we define the matroid MF to be the

matroid deleting every element of E \F from M . We also define the matroid MF to be

the matroid contracting every element of F from M .

Remark 2.7. If M is a simple matroid, then MF is also simple for any flat F . How-

ever, MF may fail to be simple. If M is a loopless matroid, then MF and MF are

loopless for any flat F .

Definition 2.12 (direct sum). Another way to construct new matroid is taking direct

sum. Let M1 and M2 be matroids with ground sets E1 and E2 respectively. Then their

direct sum M1 ⊕M2 is defined to be the matroid with ground set E1 ⊔ E2 and

IM1⊕M2
= {I1 ∪ I2 | I1 ∈ I1, I2 ∈ I2}.

Remark 2.8. Equivalently, the direct sum matroid can be defined using basis

BM1⊕M2
= {B1 ∪B2 | B1 ∈ BM1

, B2 ∈ BM2
},

or rank function

rkM1⊕M2(S1 ∪ S2) = rkM1(S1) + rkM2(S2),

or flats

FM1⊕M2 = {F1 ∪ F2 | F1 ∈ FM1 , F2 ∈ FM2}.

2.3 Characteristic polynomials

Definition 2.13 (characteristic polynomial). Let M be a matroid with ground set E.

Its characteristic polynomial is defined as

χM (t) =
∑
S⊂E

(−1)|S|tr(M)−r(S).

Proposition 2.2. The characteristic polynomial χM (t) satisfies the following proper-

ties:

1. (loop property) If M has a loop, then χM (t) = 0;

2. (normalization) The characteristic polynomial of the uniform matroid U1,1 sat-

isfies

χU1,1
(t) = t− 1;

3. (direct sum) If M = M1 ⊕M2, then

χM1⊕M2(t) = χM1(t) · χM2(t);
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4. (deletion/contraction) If e is not a coloop of M , then

χM (t) = χM\e(t)− χM/e(t).

Moreover, the characteristic polynomial is the unique way to associate each matroid a

polynomial such that all the above properties are satisfied.

Proposition 2.3. Let G be a graph, and let M be the associated matroid. Then,

PG(t) = tl · χM (t)

where l is the number of connected components of G.

2.4 Hyperplane arrangement

As we have discussed, a realizable matroid corresponds to a vector configuration.

Dually, a (loopless) realizable matroid also corresponds to a hyperplane arrangement.

Definition 2.14. Fixing a d-dimensional vector space V , a central hyperplane ar-

rangement is a collection A = {H1, . . . ,Hn} of (d − 1)-dimensional linear subspaces

(also called hyperplanes). Here we allow two hyperplanes to be the same. The hyper-

plane arrangement A is called essential, if the intersection of all the hyperplanes Hi is

equal to zero. Given a hyperplane arrangement A = {H1, . . . ,Hn} in V , we define the

hyperplane arrangement complement to be the open subvariety U = V \ (H1 ∪ · · · ∪Hn)

of V .

Proposition 2.4. Given such a central hyperplane arrangement A, it defines a matroid

M on E = {1, . . . , n} whose rank function is given by

r(S) = d− dim
⋂
i∈S

Hi.

In the realizable case, the characteristic polynomial of a matroid is closely related

to the geometry of the corresponding hyperplane arrangement complement.

Proposition 2.5. Let M be the loopless matroid associated to an essential hyperplane

arrangement A in a K-vector space V , and let U be the hyperplane arrangement com-

plement. If χM (t) = td + a1t
d−1 + · · · + ad, then in K0(VarK), the Grothendieck ring

of algebraic varieties over K,

[U ] = Ld + a1Ld−1 + · · ·+ ad,

where L = [A1].

As consequences of the above proposition, we have the following.
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Corollary 2.1. Let A be an essential hyperplane arrangement in a vector space V over

a finite field Fq with q elements, and let U be the complement. Denote the associated

matroid to be M . Then the number of Fqr points on U is qual to χM (qr).

Corollary 2.2. Let A be an essential hyperplane arrangement in a complex vector space

V , and let U be the complement. Denote the associated matroid to be M . Then,

χM (t) =
∑

0≤k≤d

(−1)k dimQ Hk(U,Q)td−k

=
∑

0≤k≤d

(−1)d−k dimQ Hd+k
c (U,Q)tk.

Proof. Sketch of proof. The two summations are equal to each other by Poincaré

duality. So it is enough to show χM (t) is equal to the second summation.

To relate the Betti numbers and the class in the Grothendieck ring, we need a

fact that the mixed Hodge structure on Hk(U,Q) is of (k, k)-type. In fact, when k =

1, this follows from the fact that U admits a good compactification U ⊂ Pd−1 with

H1(Pd−1,Q) = 0. In general, we know that the cohomology ring H•(U,Q) is generated

in degree one (e.g., by the theorem of Orlik-Solomon). Thus, the mixed Hodge structure

on Hk(U,Q) is of (k, k)-type. By Poincaré duality, the Hodge structure on Hk
c (U,Q) is

of (k− d, k− d)-type. The class [U ] ∈ K0(VarK) determines the (compactly supported)

Hodge-Deligne polynomial of U :

E(U) =
∑
k

∑
p,q

(−1)khp,q
(
Hk

c (U,Q)
)
xpyq

where hp,q
(
Hk

c (U,Q)
)

denotes the dimension of the (p, q)-component of the mixed

Hodge structure on Hk
c (U,Q). Since Hk

c (U,Q) is of (k − d, k − d)-type, we know that

E(U) =
∑

d≤k≤2d

(−1)k dimHk
c (U,Q)(xy)k−d

=
∑

0≤k≤d

(−1)k dimH2d−k
c (U,Q)(xy)d−k.

On the other hand, since E(Ck) = (xy)k, by Proposition 2.5,

E(U) = χM (xy).

Combining the above two equalities and substitute k by d − k, we have the desired

equality

χM (t) =
∑

0≤k≤d

(−1)d−k dimHd+k
c (U,Q)tk.
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Remark 2.9. The above two corollaries imply that the Betti numbers of a hyperplane

arrangement complement (over C) and the number of Fr
q points on the complement

(over a finite field) are combinatorial invariants. A deeper theorem of Orlik-Solomon

says that the cohomology ring of a hyperplane arrangement complement (over C) is also
a combinatorial invariant. In this note, we will not get into details along this direction.

Remark 2.10. In [3], Huh proved the log-concavity of the coefficients of the charac-

teristic polynomial for matroids realizable over a field of characteristic 0. He used the

above corollary (more precisely the projective analog) and a theorem of Dimca-Papadima

to realize the coefficients of the characteristic polynomial as intersections numbers on a

projective variety. In the later paper of Huh and Katz [4], they used combinatorial argu-

ments to show the coefficients of the (reduced) characteristic polynomial are the desired

intersection numbers.
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