
Representation Theory Transcribed by Zhenpeng Wang

This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than
complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Group representations, Maschke’s theorem, characters

1.1 Finite group representations

For a K-vector space V recall that GL(V ) is the group of invertible linear maps V → V .

Definition 1.1 (group representation). Let G be a group. A group representation of G is a pair (V, ρ)
where V is a vector space and ρ : G→ GL(V ) is a group homomorphism. In earlier lectures, we saw that
representations of G are the same thing as representations of the group algebra K[G] = K-span{ag : g ∈
G}.

From now on, we will think of elements of K[G] as formal (finite) linear combinations of group elements,
writing

∑
g∈G cgg instead of

∑
g∈G cgag, where cg ∈ K and ag is the formal symbol indexed by g ∈ G.

We are interested in representations of finite groups G. In this case K[G] has finite dimension.

Our first important question to answer is: when is K[G] semisimple?

From this point on, assume that the group G is finite. Write |G| for its number of elements.

Theorem 1.2 (Maschke’s theorem). Assume that char(K) does not divide |G|. Then K[G] is semisimple.

Proof. Let (V, ρ) be a finite-dimensional G-representation, and hence also a K[G]-representation.

It suffices to check that V is a direct sum of irreducible subrepresentations. This clearly holds if (V, ρ) is
irreducible so assume this is not the case. Then V must have an irreducible subrepresentation W by one
of our homework exercises. By induction on dimension, it is enough to show that V has another nonzero
subrepresentation U such that V =W ⊕ U .

We can find a subspace Ũ , not necessarily a subrepresentation, with V =W ⊕ Ũ as vector spaces.

Just choose a basis w1, w2, . . . , wm of W , extend this to a basis w1, . . . , wm, u1, . . . , un for V , and set

Ũ = K-span{u1, . . . , un}.

Here is the key idea to the proof.

Let π : V →W be linear map with π(wi) = wi for all i and π(uj) = 0 for all j. Then define

σ =
1

|G|
∑
g∈G

ρ(g) ◦ π ◦ ρ(g−1)

Finally consider U = kernel(σ). We claim that:

1. U is a subrepresentation.

2. V =W ⊕ U .

Property (1) holds because for any h ∈ G we have

σρ(h) =
1

|G|
∑
g∈G

ρ(g) ◦ π ◦ ρ(g−1h) =
1

|G|
∑
x∈G

ρ(hx) ◦ π ◦ ρ(x−1) = ρ(h)σ,

making the substitution x = h−1g in the second equality.
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Thus σ(u) = 0 if and only if σρ(h)(u) = ρ(h)σ(u) = 0 for any h ∈ G and u ∈ U , as ρ(h) is invertible.
For property (2), note that ρ(W ) ⊆ W and π(w) = w for all w ∈ W , so σ(w) = w for all w ∈ W . Since
σ(V ) ⊆W , it follows that σ2 = σ. Thus any v ∈ V can be written as

v = σ(v) + (v − σ(v))

where σ(v) ∈ W and (v − σ(v)) ∈ U , and we have W ∩ U = 0 since if x ∈ W ∩ U then x = σ(x) = 0.
Thus V =W ⊕ U as needed.

Corollary 1.3. Assume char(K) does not divide |G|. Then there are finitely many isomorphism classes
of irreducible G-representations {(Vi, ρi)}i∈I , all of which have finite dimension, and we have

|G| =
∑
i∈I

(dim Vi)
2 and K[G] ∼=

⊕
i∈I

End(Vi).

The representation theory of finite-dimensional semisimple algebras is trivial in the sense that everything
is just a direct sum of matrix algebras. What makes the representation theory of finite groups more
interesting is the distinguished basis of K[G] provided by G itself. Going from this basis to the natural
bases of K[G] viewed as a sum of matrix algebras is nontrivial.

It turns out that the converse to Maschke’s theorem is also true.

Theorem 1.4 (Converse to Maschke’s theorem). If K[G] is semisimple then char(K) does not divide |G|.

Proof. Assume K[G] is semisimple and consider the subspace

U
def
= K-span

∑
g∈G

g

 .

This is a 1-dimensional subrepresentation of K[G].

By semisimplicity, there exists a complementary subrepresentation V ⊂ K[G] with K[G] = U ⊕ V . View
K as a G-representation with g · c = c for all g ∈ G and c ∈ K.

Then define ϕ : K[G] → K to be linear map that sends V → 0 and
∑
g∈G g 7→ 1K. Because U and

V are subrepresentations, the map ϕ is a morphism of K[G]-representations. Thus ϕ(g) = ϕ(g · 1G) =
g · ϕ(1G) = ϕ(1G) ∈ K for all g ∈ G.

But this means that
1K = ϕ(

∑
g∈G

g) =
∑
g∈G

ϕ(g) =
∑
g∈G

ϕ(1G) = |G|ϕ(1G).

Thus |G| is invertible (and nonzero) in K, so char(K) must not divide |G|.

1.2 Characters of group representations

Continue to let G be a finite group.

If (V, ρ) is a G-representation with dimV <∞ then its character is the map χ(V,ρ) : G→ K with

χ(V,ρ)(g) = tr(ρ(g)).

Since traces are invariant under change of basis, it follows that:

Fact 1.5. If (V, ρ) ∼= (V ′, ρ′) as G-representations then χ(V,ρ) = χ(V ′,ρ′).
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The conjugacy classes of G are the sets Kg
def
= {xgx−1 : x ∈ G} for g ∈ G.

A class function of G is a map G→ K that is constant on all elements in each conjugacy class.

Equivalently, f : G→ K is a class function if and only if f(xgx−1) = f(g) for all x, g ∈ G.

Fact 1.6. The character of any finite-dimensional G-representation is a class function.

We say that the character χ(V,ρ) is irreducible if (V, ρ) is an irreducible representation.

We mention some special properties of irreducible characters that hold when K[G] is semisimple.

Proposition 1.7. If char(K) does not divide |G| then the irreducible characters of G are a basis for the
vector space of class functions of G.

Proof. In this case K[G] is semisimple so the irreducible characters are a basis for (K[G]/[K[G],K[G]])∗.

By definition, this dual space can be identified with the vector space of linear maps f : K[G] → K that
satisfy f(XY ) = f(Y X) for all X,Y ∈ K[G]. Check that this is the same as the set of linear maps
f : G → K with f(gh) = f(hg) for all g, h ∈ G, or equivalently with f(xgx−1) = f(g) for all x, g ∈ G.
Thus, we can identify (K[G]/[K[G],K[G]])∗ with the vector space of class functions of G.

Corollary 1.8. If |G| is not divisible by char(K) then the number of isomorphism classes of irreducible
G-representations is the same as the number of distinct irreducible characters of G, which is also the
number of distinct conjugacy classes of G.

Corollary 1.9. If char(K) = 0 then two finite-dimensional G-representations are isomorphic if and only
if they have the same character.

A group G is abelian if gh = hg for all g, h ∈ G. This holds if and only if the group algebra K[G] is
commutative, so the following is true:

Fact 1.10. If G is abelian then all irreducible G-representations are 1-dimensional.

Suppose f : V →W is a linear map between vector spaces.

Recall that V ∗ is the vector space of linear maps λ : V → K.

Define f∗ :W ∗ → V ∗ to be the linear map with the formula f∗(λ) = λ ◦ f .

If f ∈ GL(V ) then f∗ ∈ GL(V ∗) since (f ◦ g)∗ = g∗ ◦ f∗.

Now suppose (V, ρV ) is a G-representation. Define ρV ∗ : G→ GL(V ∗) by the formula

ρV ∗(g) = (ρV (g)
∗)−1 = (ρV (g)

−1)∗ = ρV (g
−1)∗.

Fact 1.11. If (V, ρV ) is a representation then so is (V ∗, ρV ∗).

From this point on, we assume dimV <∞.

Fact 1.12. We have tr(f) = tr(f∗) so χ(V ∗,ρV ∗ )(g) = χ(V,ρ)(g
−1) for all g ∈ G.

Since G is a finite group, any g ∈ G has g|G| = 1G, and so any eigenvalue of ρV (g) is a root of unity.

The character value χ(V,ρV )(g) is the sum of the eigenvalues of ρV (g), and is therefore a sum of roots of
unity in K. When K = C, the inverse of any root of unity is its complex conjugate.
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As the eigenvalues of ρV (g
−1) are the inverses of the eigenvalues of ρV (g), we deduce that:

Fact 1.13. If K = C then χ(V,ρV )(g) = χ(V,ρV )(g
−1) = χ(V ∗,ρV ∗ )(g) for all g ∈ G. In this case (V, ρV ) ∼=

(V ∗, ρV ∗) if and only if χ(V,ρV ) takes all real values.

Finally suppose (V, ρV ) and (W,ρW ) are G-representations. Then (V ⊗W,ρV⊗W ) is a G-representation
when ρV⊗W (g) is linear map sending v ⊗ w 7→ ρV (g)(v)⊗ ρW (g)(w) for g ∈ G, v ∈ V , and w ∈W .

Fact 1.14. If dimV <∞ and dimW <∞ then χ(V⊗W,ρV⊗W ) = χ(V,ρV )χ(W,ρW ).

Remark 1.15. A G-representation is a left K[G]-module. The algebra K[G] is often noncommutative.

Earlier, we emphasized that if A is a noncommutative algebra then the tensor product of two left A-
modules is not a well-defined left A-module in general.

So how do we explain the existence of a tensor product for group representations?

Solution: the tensor product of two left A-modules does have the structure of a left A × A-module. In
particular, the tensor product of (V, ρV ) and (W,ρW ) is a representation of K[G]⊗K[G].

A special property of group algebras is that K[G]⊗K[G] has a subalgebra K-span{g⊗g : g ∈ G} ∼= K[G].
By identifying K[G] with this subalgebra, any K[G] ⊗ K[G]-representation can be viewed as a K[G]-
representation, and this is how we define the G-representation (V, ρV )⊗ (W,ρW ).

2 Orthogonality relations, Unitary representations

2.1 More special properties of characters

For the rest of today, we assume that G is a finite group.

Suppose V and W are G-representations. Let HomK(W,V ) denote the set of linear maps W → V .

The vector space HomK(W,V ) is a left K[G]⊗K[G]-module for the action

(g ⊗ h) · φ : w 7→ gφ(h−1w) for g, h ∈ G.

Indeed, notice that if ϕ :W → V is linear and w ∈W then

((g1g2 ⊗ h1h2) · φ)(w) = g1g2φ(h
−1
2 h−1

1 w) = g1(g2 ⊗ h2 · φ)(h−1
1 w) = ((g1 ⊗ h1)(g2 ⊗ h2) · φ)(w)

for any g1, g2, h1, h2 ∈ G. Now assume that V and W are finite-dimensional.

Proposition 2.1. It holds that V ⊗W ∗ ∼= HomK(W,V ) as K[G]⊗K[G]-modules.

Proof. Let F : V ⊗K W
∗ → HomK(W,V ) be the linear map sending

v ⊗ φ 7→ (w 7→ φ(w)v) for v ∈ V and φ ∈W ∗.

Notice that if {vi} is a basis for V , {wj} is basis for W , and {δj} is the dual basis for W ∗, then F sends
vi ⊗ δj to the linear map W → V whose matrix in the chosen bases has a one in position (i, j) and zeros
elsewhere. Any linear map W → V is a linear combination of such images F (vi ⊗ δj), so F is surjective.

Because dim(V ⊗K W
∗) = dimV dimW ∗ = dimV dimW = dim(HomK(W,V )), as V and W are finite-

dimensional, the map F is an isomorphism of K-vector spaces.

For any g, h ∈ G, v ∈ V , w ∈W , and φ ∈W ∗, we have

((g ⊗ h) · F (v ⊗ φ))(w) = gφ(h−1w)v
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and
F ((g ⊗ h) · (v ⊗ φ))(w) = F (gv ⊗ φ ◦ h−1)(w) = φ(h−1w)(gv) = gφ(h−1w)v.

Hence, F is an isomorphism of K[G]⊗K[G]-modules.

By letting g ∈ G act as g ⊗ g, we can view V ⊗K[G] W
∗ ∼= HomK(W,V ) as isomorphic G-modules.

Proposition 2.2. The set (HomK(W,V ))G of elements in HomK(W,V ) fixed by all g ∈ G is HomG(W,V ).

Proof. Notice that if φ ∈ HomG(W,V ), then for any g ∈ G, we have the following commutative diagram

Since the vertical map is invertible, we have φ(w) = g(φ(g−1w)) = (g · φ)(w) for any w ∈ W . Thus,
HomG(W,V ) ⊆ (HomK(W,V ))G.

Conversely, if φ ∈ (HomK(W,V ))G, then for any g ∈ G and w ∈W , we have

φ(gw) = (g · φ)(gw) = gφ(g−1gw) = gφ(w).

Thus, φ ∈ HomG(W,V ) and (HomK(W,V ))G ⊆ HomG(W,V ).

Combining the preceding results lets us deduce that:

Corollary 2.3. There is an isomorphism (V ⊗K[G] W
∗)G ∼= HomG(W,V ) as G-modules.

From now on, we assume K = C.

For any maps f1, f2 : G→ C, we define a positive-definite Hermitian form

(f1, f2) :=
1

|G|
∑
g∈G

f1(g)f2(g).

Fact 2.4. When V is finite dimensional, we have χ∗
V (g) = χV (g

−1) for any g ∈ G. If we further assume

that K = C, then χV ∗(g) = χV (g
−1) = χV (g) for all g ∈ G.

Theorem 2.5. The set Irr(G) is an orthonormal basis for the class functions on G with respect to (·, ·).
In other words, we have (χ, ψ) = δχψ for any χ, ψ ∈ Irr(G).

Proof. By Schur’s Lemma, it suffices to prove that for any G-representations V and W , we have

(χV , χW ) = dimHomG(W,V ).

Let π := 1
|G|

∑
g∈G g ∈ K[G]. By Fact 2.4, we have

(χV , χW ) =
1

|G|
∑
g∈G

χV (g)χW (g) =
1

|G|
∑
g∈G

χV (g)χW∗(g) =
1

|G|
∑
g∈G

χV⊗K[G]W∗(g) = χV⊗K[G]W∗(π).

If X is any G-representation, then XG := {x ∈ X : gx = x} is a subrepresentation of G. Notice that
gπ = 1

|G|
∑
h∈G gh = 1

|G|
∑
gh∈G gh = π for any g ∈ G.
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Therefore, we have πx ∈ XG for any x ∈ X and π : X ↠ XG is a projection map. Thus dim(XG) =
χX(π). Restricting to the case when X = V ⊗K[G] W

∗, we get

χV⊗K[G]W∗(π) = dim(V ⊗K[G] W
∗)G = dim(HomG(W,V ))

by Corollary 2.3.

For g ∈ G, let Zg := {h ∈ G : hgh−1 = g} be the centralizer of g.

Also let Kg := {hgh−1 : h ∈ G} be the conjugacy class of g.

Fact 2.6. By the Orbit-Stabilizer Theorem it holds that |Kg| = |G|
|Zg| .

Theorem 2.7. Let g, h ∈ G. Then ∑
ψ∈Irr(G)

ψ(g)ψ(h) = |Zg|Kg = Kh,

0Kg ̸= Kh.

Proof. (proof sketch)

We want to describe this sum as the trace of a C-endomorphism of C[G].

If we write Vψ for an irreducible representation with character ψ, then we have∑
ψ∈Irr(G)

ψ(g)ψ(h) =
∑

ψ∈Irr(G)

χVψ (g)χV ∗
ψ
(h)

=
∑

ψ∈Irr(G)

χVψ⊗V ∗
ψ
(g ⊗ h)

= tr

 ⊕
ψ∈Irr(G)

ρVψ⊗V ∗
ψ

 (g ⊗ h)


We have an isomorphism

⊕
ψ∈Irr(G) Vψ⊗V ∗

ψ
∼=

⊕
ψ∈Irr(G) End(Vψ)

∼= C[G] of C[G]⊗C[G] representations.

Under this isomorphism, g ⊗ h acts on C[G] as the linear map sending x ∈ G to gxh−1.

Thus
∑
ψ∈Irr(G) ψ(g)ψ(h) is the trace of x 7→ gxh−1, which is

|{x ∈ G : x = gxh−1}| = |{x ∈ G : g = xhx−1}| =

{
|Zg| if Kg = Kh

0 if Kg ̸= Kh.

2.2 Unitary representations

Definition 2.8 (unitary representation). A finite-dimensional representation (V, ρ) of a group G (over
C) is unitary if there is a G-invariant positive definite Hermitian form (·, ·) : V × V → C with

(ρ(g)v, ρ(g)w) = (v, w) for any v, w ∈ V and g ∈ G.

Proposition 2.9. If G is a finite group, then any finite dimensional G-representation is unitary.
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Proof. Pick any basis {vi} for V . We define a positive-definite Hermitian form ⟨·, ·⟩ : V × V → C with

⟨vi, vj⟩ = 1if i = j

0if i ̸= j.

Then the form (vi, vj) :=
∑
g∈G⟨gvi, gvj⟩ is positive-definite and Hermitian.

Proposition 2.10. If (V, ρ) is a finite-dimensional unitary representation of a (not necessarily finite)
group G, then (V, ρ) is semisimple.

Proof. Any irreducible representation is semisimple so assume V is reducible. Choose an irreducible
subrepresentation of U ⊆ V . Write (·, ·) for the form that makes V unitary.

Let U⊥ = {v ∈ V : (v, u) = 0 for all u ∈ U}. Then V = U ⊕U⊥ and U⊥ is a subrepresentation since the
relevant form is G-invariant, so the result follows by induction on dimension.

2.3 Matrix elements

Continue to assume that G is a finite group and V is a finite dimensional irreducible C[G]-module.

Choose a G-invariant positive definite Hermitian form (·, ·) on V and let {vi} be an orthonormal basis
on V with respect to (·, ·). Define tVij(g) := (gvi, vj) for any g ∈ G.

For each pair (i, j) with 1 ≤ i, j ≤ dimV , the map tVij : G→ C is called a matrix element.

Proposition 2.11. The rescaled matrix elements 1√
dimV

tVij : G→ C (as V ranges over all isomorphism

classes of finite dimensional irreducible G-representations and i, j range over the indices of an orthonormal
basis of V ) give an orthonormal basis of the space of all functions G→ C.

We won’t present the proof in class, but this can be found in the textbook.

Note that number of distinct matrix elements is
∑
V (dimV )2 = |G|.

2.3.1 Character tables

Suppose G is a finite group. Choose representatives 1 = g1, g2, · · · , gr for distinct conjugacy classes in G.

Suppose 1 = χ1, χ2, · · · , χr are the distinct elements in Irr(G).

Here 1 denotes the irreducible character G→ {1}.

Then everything you want to know about Irr(G) is encoded by the matrix

Irr(G) 1 = g1 g2 · · · gr
1 = χ1 1 1 · · · 1
χ2 χ2(1) χ2(g2) · · · χ2(gr)
...

...
...

...
...

χr χr(1) χr(g2) · · · χr(gr)

called the character table of G.

Example 4.2. If G = S3, then the character table of G is

Irr(S3) 1 (1, 2) (1, 2, 3)
1 = χ(3) 1 1 1
χ(2,1) 2 0 -1
χ(1,1,1) 1 -1 1

Using the character table orthogonality relations from today, you can compute the sizes of all conjugacy
classes in G. Then you can decompose arbitrary products of characters into irreducibles.
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