Representation Theory Transcribed by Zhenpeng Wang

This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than
complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 Group representations, Maschke’s theorem, characters

1.1 Finite group representations

For a K-vector space V recall that GL(V) is the group of invertible linear maps V' — V.

Definition 1.1 (group representation). Let G be a group. A group representation of G is a pair (V] p)
where V is a vector space and p : G — GL(V) is a group homomorphism. In earlier lectures, we saw that
representations of G are the same thing as representations of the group algebra K[G] = K-span{a, : g €

G}.

From now on, we will think of elements of K[G] as formal (finite) linear combinations of group elements,
writing deG cqg instead of deG cgaq, where ¢, € K and a4 is the formal symbol indexed by g € G.

We are interested in representations of finite groups G. In this case K[G] has finite dimension.
Our first important question to answer is: when is K[G] semisimple?

From this point on, assume that the group G is finite. Write |G| for its number of elements.

Theorem 1.2 (Maschke’s theorem). Assume that char(K) does not divide |G|. Then K[G] is semisimple.

Proof. Let (V, p) be a finite-dimensional G-representation, and hence also a K[G]-representation.

It suffices to check that V' is a direct sum of irreducible subrepresentations. This clearly holds if (V] p) is
irreducible so assume this is not the case. Then V must have an irreducible subrepresentation W by one
of our homework exercises. By induction on dimension, it is enough to show that V has another nonzero
subrepresentation U such that V =W @ U.

We can find a subspace U, not necessarily a subrepresentation, with V = W & U as vector spaces.

Just choose a basis wy, wa, ..., w,, of W, extend this to a basis wq, ..., wm,u1,...,u, for V, and set

U = K-span{uy, ..., up}.

Here is the key idea to the proof.
Let m: V' — W be linear map with 7(w;) = w; for all ¢ and m(u;) = 0 for all j. Then define

o S ota)omopla™)
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Finally consider U = kernel(o). We claim that:
1. U is a subrepresentation.
2. V=WwaelU.
Property (1) holds because for any h € G we have
=G S ple)omoplg™h) = 7 3 plhe) oo pla™) = (b,
geG z€G

making the substitution = h~1g in the second equality.
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Thus o(u) = 0 if and only if op(h)(u) = p(h)o(u) = 0 for any h € G and u € U, as p(h) is invertible.
For property (2), note that p(W) C W and n(w) = w for all w € W, so o(w) = w for all w € W. Since
o(V) C W, it follows that 02 = o. Thus any v € V can be written as

v=0c()+ (v—o0())

where o(v) € W and (v — o(v)) € U, and we have W NU = 0 since if z € W NU then z = o(z) = 0.
Thus V =W @ U as needed. O

Corollary 1.3. Assume char(K) does not divide |G|. Then there are finitely many isomorphism classes
of irreducible G-representations {(V;, p;) }ier, all of which have finite dimension, and we have

G| = (dim V;)?> and K[G] = D End(V;).

icl iel

The representation theory of finite-dimensional semisimple algebras is trivial in the sense that everything
is just a direct sum of matrix algebras. What makes the representation theory of finite groups more
interesting is the distinguished basis of K[G] provided by G itself. Going from this basis to the natural
bases of K[G] viewed as a sum of matrix algebras is nontrivial.

It turns out that the converse to Maschke’s theorem is also true.

Theorem 1.4 (Converse to Maschke’s theorem). If K[G] is semisimple then char(K) does not divide |G].

Proof. Assume K[G] is semisimple and consider the subspace

U K-span Z g
geG
This is a 1-dimensional subrepresentation of K[G].

By semisimplicity, there exists a complementary subrepresentation V' C K[G] with K[G] = U & V. View
K as a G-representation with g -c = c for all g € G and ¢ € K.

Then define ¢ : K[G] — K to be linear map that sends V' — 0 and >° ;g — lx. Because U and
V are subrepresentations, the map ¢ is a morphism of K[G]-representations. Thus ¢(g) = ¢(g - 1g) =
g-d(lg) =¢(lg) e Kfor all g € G.

But this means that
L=9(3"9) = Y 6(9) = 3 61e) = [Glé(1c).

geG geG geG

Thus |G| is invertible (and nonzero) in K, so char(K) must not divide |G|. O

1.2 Characters of group representations
Continue to let G be a finite group.
If (V, p) is a G-representation with dim V' < oo then its character is the map x(v,,) : G — K with

X(v,p)(9) = tr(p(9))-

Since traces are invariant under change of basis, it follows that:

Fact 1.5. If (V,p) = (V’, p') as G-representations then x(v,,) = x(v',»)-
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The conjugacy classes of G are the sets K|, def {zgz=t:2 € G} forgeG.
A class function of G is a map G — K that is constant on all elements in each conjugacy class.

Equivalently, f : G — K is a class function if and only if f(zgz™!) = f(g) for all z,g € G.

Fact 1.6. The character of any finite-dimensional G-representation is a class function.
We say that the character x (v, is irreducible if (V, p) is an irreducible representation.

We mention some special properties of irreducible characters that hold when K[G] is semisimple.

Proposition 1.7. If char(K) does not divide |G| then the irreducible characters of G are a basis for the
vector space of class functions of G.
Proof. In this case K[G] is semisimple so the irreducible characters are a basis for (K[G]/[K[G], K[G]])*.

By definition, this dual space can be identified with the vector space of linear maps f : K[G] — K that
satisfy f(XY) = f(YX) for all X,Y € K[G]. Check that this is the same as the set of linear maps
f: G — K with f(gh) = f(hg) for all g,h € G, or equivalently with f(xzgz~!) = f(g) for all x,g € G.
Thus, we can identify (K[G]/[K[G],K[G]])* with the vector space of class functions of G. O

Corollary 1.8. If |G| is not divisible by char(K) then the number of isomorphism classes of irreducible
G-representations is the same as the number of distinct irreducible characters of G, which is also the
number of distinct conjugacy classes of G.

Corollary 1.9. If char(K) = 0 then two finite-dimensional G-representations are isomorphic if and only
if they have the same character.

A group G is abelian if gh = hg for all g,h € G. This holds if and only if the group algebra K[G] is
commutative, so the following is true:

Fact 1.10. If G is abelian then all irreducible G-representations are 1-dimensional.
Suppose f: V — W is a linear map between vector spaces.

Recall that V* is the vector space of linear maps A : V — K.

Define f*: W* — V* to be the linear map with the formula f*(\) = Ao f.

If f € GL(V) then f* € GL(V*) since (fog)* = g* o f*.

Now suppose (V, py) is a G-representation. Define py« : G — GL(V*) by the formula

pv+(9) = (pv(g)) " = (pv(9) ™) =pv(g™")"

Fact 1.11. If (V, py) is a representation then so is (V*, py«).

From this point on, we assume dim V' < oo.

Fact 1.12. We have tr(f) = tr(f*) so x (v« p,.)(9) = X(Vw)(g*l) for all g € G.
Since G is a finite group, any g € G has ¢!¢l = 14, and so any eigenvalue of py (g) is a root of unity.

The character value X (v, (g) is the sum of the eigenvalues of py(g), and is therefore a sum of roots of
unity in K. When K = C, the inverse of any root of unity is its complex conjugate.
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As the eigenvalues of py(g~!) are the inverses of the eigenvalues of py (g), we deduce that:

Fact 1.13. If K = C then x(v,,,)(9) = X(Vypv)(gfl) = X(v+,py«)(9) for all g € G. In this case (V, py) =
(V*, pv+) if and only if x(v,,, ) takes all real values.

Finally suppose (V, py) and (W, py) are G-representations. Then (V ® W, pygw ) is a G-representation
when pygw(g) is linear map sending v @ w +— py (g)(v) @ pw(g)(w) for g € G, v € V, and w € W.

Fact 1.14. If dimV < oo and dim W < oo then X (vew,pyow) = X(V.ov) X (W.ow)-

Remark 1.15. A G-representation is a left K[G]-module. The algebra K[G] is often noncommutative.

Earlier, we emphasized that if A is a noncommutative algebra then the tensor product of two left A-
modules is not a well-defined left A-module in general.

So how do we explain the existence of a tensor product for group representations?

Solution: the tensor product of two left A-modules does have the structure of a left A x A-module. In
particular, the tensor product of (V, py) and (W, pw) is a representation of K[G] ® K[G].

A special property of group algebras is that K[G] ® K[G] has a subalgebra K-span{g® g : g € G} 2 K[G].
By identifying K[G] with this subalgebra, any K[G] ® K[G]-representation can be viewed as a K[G]-
representation, and this is how we define the G-representation (V, py) @ (W, pw).

2 Orthogonality relations, Unitary representations

2.1 More special properties of characters

For the rest of today, we assume that G is a finite group.

Suppose V and W are G-representations. Let Homg (W, V') denote the set of linear maps W — V.
The vector space Homg (W, V) is a left K[G] @ K[G]-module for the action

(g@h)-p:ww go(h~tw) for g,h €G.

Indeed, notice that if ¢ : W — V is linear and w € W then

((9192 ® h1ha) - @) (w) = g1gap(hy 'hi ' w) = g1(g2 @ ha - ©) (k7 'w) = (91 @ h1)(g2 @ ha) - @) (w)

for any g1, g2, h1,he € G. Now assume that V and W are finite-dimensional.

Proposition 2.1. It holds that V @ W* = Homg (W, V) as K[G] ® K[G]-modules.

Proof. Let F : V @ W* — Homg (W, V) be the linear map sending

v® @ (w p(w)y) forveV and p € W

Notice that if {v;} is a basis for V, {w;} is basis for W, and {d;} is the dual basis for W*, then F' sends
v; ® d; to the linear map W — V whose matrix in the chosen bases has a one in position (7, j) and zeros
elsewhere. Any linear map W — V is a linear combination of such images F(v; ® d;), so F' is surjective.

Because dim(V @x W*) = dim V dim W* = dim V dim W = dim(Homg(W, V)), as V and W are finite-
dimensional, the map F' is an isomorphism of K-vector spaces.

For any g,h e G,v eV, we W, and p € W*, we have

((g@h)-Flv®p))(w) = gp(h™ w)v
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and
F((g@h) (v®e)(w) =Fgv@poh™h)(w) = p(h~ w)(gv) = gp(h~ w)v.
Hence, F is an isomorphism of K[G] ® K[G]-modules. O

By letting g € G act as g ® g, we can view V Qg W* = Homg (W, V') as isomorphic G-modules.

Proposition 2.2. The set (Homg (W, V)€ of elements in Homg (W, V) fixed by all g € G is Homg (W, V).

Proof. Notice that if ¢ € Homg (W, V), then for any g € G, we have the following commutative diagram

Since the vertical map is invertible, we have ¢(w) = g(p(g~ w)) = (g - ¢)(w) for any w € W. Thus,

Homg (W, V) C (Homg (W, V))€.
Conversely, if ¢ € (Homg (W, V)%, then for any g € G and w € W, we have
plgw) = (g-9)(gw) = gp(g~" gw) = gp(w).
Thus, ¢ € Homg(W, V) and (Homg (W, V))¢ C Homg (W, V). O

Combining the preceding results lets us deduce that:

Corollary 2.3. There is an isomorphism (V ®xjg) W*)¢ = Homg (W, V) as G-modules.
From now on, we assume K = C.
For any maps fi, fo : G — C, we define a positive-definite Hermitian form

=@ Zﬁ

geG

(f17f2

Fact 2.4. When V is finite dimensional, we have x%,(g) = xv(¢™') for any g € G. If we further assume
that K = C, then xy+(g) = xv(971) = xv(g) for all g € G.

Theorem 2.5. The set Irr(G) is an orthonormal basis for the class functions on G with respect to (-, -).
In other words, we have (x, %) = 0yy for any x, ¢ € Irr(G).

Proof. By Schur’s Lemma, it suffices to prove that for any G-representations V' and W, we have

(xv, xw) = dimHomg (W, V).

Let 7: \GI decg € K[G]. By Fact , we have

geG geG e

If X is any G-representation, then X := {x € X : gz = x} is a subrepresentation of G. Notice that
gT = \%\Zheagh: ﬁzgheGQh =7 for any g € G.
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Therefore, we have mz € X for any x € X and 7 : X — X is a projection map. Thus dim(X%) =
Xx (7). Restricting to the case when X =V ®gjq W*, we get

XV &g w (1) = dim(V @gig W) = dim(Homg (W, V))
by Corollary O

For g € G, let Z, := {h € G : hgh™! = g} be the centralizer of g.
Also let K, := {hgh™' : h € G} be the conjugacy class of g.

Fact 2.6. By the Orbit-Stabilizer Theorem it holds that |K,| = llzcj‘.

Theorem 2.7. Let g,h € G. Then

Z ¢(9>W: |Zg|Kg = K,

PElrr(G)
0K, # Ky
Proof. (proof sketch)
We want to describe this sum as the trace of a C-endomorphism of C[G].
If we write V,, for an irreducible representation with character 1, then we have
> dlwm) = > xv(9)xv;(h)
Pelrr(G) Pelrr(G)
= Z Xv,evy (9@ h)

Pelrr(G)

= tr D rvev; | (geh)
Yelrr(G)

We have an isomorphism €D, c1,,(q) Vo ® Vi = Dyern(a) End(Vy) = C[G] of C[G]®@ C[G] representations.
Under this isomorphism, g ® h acts on C[G] as the linear map sending x € G to grh™!.
Thus > cre(q) ¥(9)¢(h) is the trace of z — grh~!, which is

|Z| i Ky = Kp,

G:z=gzh '} = G:g=ahx '} =
{zeG:z=gah }|=[{x€G:g=aha}| {o if Ky # Kp.

2.2 Unitary representations

Definition 2.8 (unitary representation). A finite-dimensional representation (V,p) of a group G (over
C) is unitary if there is a G-invariant positive definite Hermitian form (-,-) : V x V' — C with

(p(g)v, p(g)w) = (v,w) for any v,w € V and g € G.

Proposition 2.9. If GG is a finite group, then any finite dimensional G-representation is unitary.
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Proof. Pick any basis {v;} for V. We define a positive-definite Hermitian form (-,-) : V' x V — C with
<’Ui,Uj> =1if ¢ :j
0if i # j.

Then the form (v;,v;) == >_ o (9vi, gv;) is positive-definite and Hermitian. O

Proposition 2.10. If (V,p) is a finite-dimensional unitary representation of a (not necessarily finite)
group G, then (V, p) is semisimple.

Proof. Any irreducible representation is semisimple so assume V' is reducible. Choose an irreducible
subrepresentation of U C V. Write (-, -) for the form that makes V unitary.

Let Ut ={v eV :(v,u) =0forallu € U}. Then V =U @ U+ and U+ is a subrepresentation since the
relevant form is G-invariant, so the result follows by induction on dimension. O
2.3 Matrix elements

Continue to assume that G is a finite group and V is a finite dimensional irreducible C[G]-module.

Choose a G-invariant positive definite Hermitian form (-,-) on V and let {v;} be an orthonormal basis
on V with respect to (-,-). Define t}}(g) := (gvi,v;) for any g € G.

For each pair (¢,7) with 1 < 4,57 < dimV, the map tl‘? : G — C is called a matrix element.

1 V. . .
Taev i G — C (as V ranges over all isomorphism
classes of finite dimensional irreducible G-representations and ¢, j range over the indices of an orthonormal

basis of V') give an orthonormal basis of the space of all functions G — C.

Proposition 2.11. The rescaled matrix elements

We won’t present the proof in class, but this can be found in the textbook.

Note that number of distinct matrix elements is > 1, (dim V)? = |G|.

2.3.1 Character tables

Suppose G is a finite group. Choose representatives 1 = g1, g2, - , g, for distinct conjugacy classes in G.
Suppose 1 = x1, X2, , Xr are the distinct elements in Irr(G).

Here 1 denotes the irreducible character G — {1}.

Then everything you want to know about Irr(G) is encoded by the matrix

I(G) | 1=g g2 gr

1= 1 1 1
X2 x2(1)  x2(92) -+ x2(9r)
Xr xr(1) xr(g2) - xr(gr)

called the character table of G.
Example 4.2. If G = S3, then the character table of G is
Irr(Ss) |1 (1L,2) (1,2,3)

1= X(3) 1 1 1
X(Q,l) 2 0 -1
X(1,1,1) 1 -1 1

Using the character table orthogonality relations from today, you can compute the sizes of all conjugacy
classes in G. Then you can decompose arbitrary products of characters into irreducibles.
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