
Representation Theory Transcribed by Zhenpeng Wang

This document is a transcript of the lecture, so is more like an abbreviated set of lecture slides than
complete lecture notes. For the latter, consult the textbook listed on the course webpage.

1 semisimple representations, density theorem

In this lecture, we begin a new chapter focusing on some general results about algebra representations.

1.1 Basic definitions and examples

From now on, we will assume that K is an algebraically closed field, and A is a K-algebra.

Definition 1.1 (semisimple representation). representation of A is semisimple or completely re-
ducible if it is isomorphic to a direct sum of irreducible representations.

As a general rule in mathematical terminology:

“simple” ≡ “irreducible” and “semisimple” ≡ “(direct) sum of simple objects”.

Notation. Suppose V is a left A-module. Often we will say that “V is a representation of A”: this just
means the representation (V, ρ) where ρ : A→ End(V ) is defined by ρ(a) : x 7→ ax for a ∈ A and x ∈ V .

Example 1.2 (Matrix algebras). Let A = Matn(K) be the algebra of n × n matrices over K and let
V = Kn be the K-vector space of column vectors with n rows.

We can transform any vector in V by multiplying it on the left by a matrix in A, and this makes V into
an A-representation: in other words, given X ∈ A and v ∈ V let Xv just mean matrix multiplication.

This representation is irreducible since if v, w ∈ W and v ̸= 0 then some X ∈ A has Xv = w. So every
nonzero vector is cyclic in the sense that it is not contained in any proper A-subrepresentation, proof by
the orbit of the endomorphism algebra.

In this case we have End(V ) = A, which is also an A-representation, via the regular representation in
which one matrix acts on another by ordinary matrix multiplication X : Y 7→ XY .

The regular representation of A is semisimple as we have A ∼= V ⊕n as A-representations.

An explicit isomorphism A
∼→ V ⊕n is the map sending

X =

X11 · · · X1n

...
...

Xn1 · · · Xnn

 7→

X11

...
Xn1

 ,

X12

...
Xn2

 , · · · ,

X1n

...
Xnn


 .

Notation. Here we define V ⊕n to be the set of n-tuples (v1, v2, . . . , vn) where each vi ∈ V and where

(v1, v2, . . . , vn) + (w1, w2, . . . , wn)
def
= (v1 + w1, v2 + w2, . . . , vn + wn),

c(v1, v2, . . . , vn)
def
= (cv1, cv2, . . . , cvn),

for vi, wi ∈ V and c ∈ K.

Example 1.3. More generally, suppose A is any algebra and V is an irreducible A-representation of
finite dimension n. Then End(V ) = {linear maps L : V → V } is an A-representation for the action

a · L : v 7→ a · L(v) for a ∈ A and v ∈ V.
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This representation is semisimple with End(V ) ∼= V ⊕n as A-representations. If V has basis {v1, · · · , vn}
then an explicit isomorphism End(V )

∼→ V ⊕n is provided by the map L 7→ (L(v1), · · · , L(vn))

1.2 Subrepresentation of semisimple representations

Our main results today are derived from the following technical property. Among other consequences, it
tells us that all subrepresentations of semisimple representations are semisimple.

Proposition 1.4. Let V1, V2, · · · , Vm be a finite list of irreducible finite-dimensional A-representations
with Vi ̸∼= Vj if i ̸= j. Consider the A-representation V =

⊕m
i=1 V

⊕ni
i where n1, n2, . . . , nm are nonnega-

tive integers. Now suppose W is a subrepresentation of V . Then:

1. For some integers 0 ≤ ri ≤ ni there is an isomorphism ϕ :
⊕m

i=1 V
⊕ri
i

∼→W .

2. The map
⊕m

i=1 V
⊕ri
i

ϕ→W ↪→ V is a direct sum of inclusions ϕi : V
⊕ri
i ↪→ V ⊕ni

i of the form

ϕi(a1, a2, · · · , ari) =
[
a1 a2 · · · ari

]
Xi

where each Xi is a full rank ri × ni matrix with values in K.

Remark 1.5. Suppose V1, V2, · · · , Vm are irreducible, pairwise non-isomorphic, finite-dimensional A-
representations. Choose positive integers n1, n2, . . . , nm and define V =

⊕m
i=1 V

⊕ni
i . Then any subrep-

resentation W of V has W ∼=
⊕m

i=1 V
⊕ri
i for some integers 0 ≤ ri ≤ ni, and there is an isomorphism

ϕ :

m⊕
i=1

V ⊕ri
i

∼→W

that sends x =

x11 x12 · · · x1r1︸ ︷︷ ︸
∈V

⊕r1
1

x21 x22 · · · x2r2︸ ︷︷ ︸
∈V

⊕r2
2

· · · xm1 xm2 · · · xmrm︸ ︷︷ ︸
∈V ⊕rm

m

 ∈ ⊕m
i=1 V

⊕ri
i to xM ∈ W ,

where M is a full rank, block diagonal matrix with entries in K, whose successive blocks have size
ri × ni for i = 1, 2, . . . ,m.

Proof. sketch: If W = 0 then the proposition is trivial. Assume W ̸= 0.

We proceed by induction on n
def
= n1 + n2 + · · ·+ nm.

If n = 1 then we must have 0 ̸= W = Vi in which case the result is again obvious.

Assume n > 1. Since W is finite-dimensional, it has an irreducible subrepresentation P (this was shown
in the HW1 exercises). Observe that HomA(P, V ) =

⊕m
i=1 HomA(P, Vi)

⊕ni . In this equation:

• each term HomA(P, Vi) on the right side is nonzero if and only if P ∼= Vi by Schur’s lemma;

• the left side is nonzero since it contains inclusion P ↪→W ↪→ V .

Therefore P must be isomorphic to Vi for some i.

The inclusion Vi
∼→ P ↪→ V ⊕ni

i ↪→ V must be given by a map of the form

v 7→ (q1v, · · · , qniv)

for some scalars qi ∈ K that are not all zero. This is because composing this map with each projection

(a1, · · · , ani
) 7→ aj ∈ Vi

is a morphism of A-representations Vi → Vi, which must be a scalar map by Schur’s lemma.
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Let g ∈ GLni
(K) = {invertible ni × ni matrices} act on V ⊕ni

i on the right by the formula

g : (v1, v2, · · · , vni
) 7→

[
v1 v2 · · · vn

]
g

while acting on V
⊕nj

j for i ̸= j as the identity. This gives a right action of the general linear group on V .

We may choose g ∈ GLni
(K) such that

Pg = {(0, 0, · · · , 0, v) : v ∈ Vi} ⊂ V ⊕ni
i .

Then Wg = W ′ ⊕ Vi where Vi = Pg and W ′ is the kernel of projection Wg → Pg, which satisfies

W ′ ⊂ V ⊕n1
1 ⊕ · · · ⊕ V

⊕(ni−1)
i ⊕ · · · ⊕ V ⊕nm

m .

Now we apply the proposition to W ′ by induction, and multiply the resulting inclusion by g−1.

Corollary 1.6. Assume the following setup:

• V is an irreducible finite-dimensional representation of A.

• The elements v1, v2, . . . , vn ∈ V are linearly independent.

• The elements w1, w2, . . . , wn ∈ V are arbitrary.

Then there exists an element a ∈ A such that avi = wi for all i = 1, 2, . . . , n.

Proof. Assume no such element exists. Then the image of A under the map

a 7→ (av1, · · · , avn)

is a proper subrepresentation of V ⊕n, which we denote by W .

By Proposition 1.4 we know that W ∼= V ⊕m for some 0 ≤ m < n and there exists an inclusion

ϕ : V ⊕m ∼→W ↪→ V ⊕n

of the form ϕ(a1, a2, · · · , am) =
[
a1 a2 · · · am

]
X where X is a full rank m× n matrix.

Since (v1, v2, · · · , vn) ∈W , we may choose ai ∈ V such that ϕ(a1, a2, · · · , am) = (v1, v2, · · · , vn).

Also, since m < n, there is nonzero vector

q1...
qn

 ∈ Kn such that X

q1...
qn

 = 0. But now

n∑
i=1

qivi =
[
v1 v2 · · · vn

] q1...
qn

 =
[
a1 a2 · · · am

]
X

q1...
qn

 = 0

which contradicts the linear independence of v1, · · · , vn.

Theorem 1.7 (Density theorem). Let (V, ρ) be an irreducible, finite-dimensional A-representation. Then
the map ρ : A → End(V ) is surjective. Moreover, if (V, ρ) = (V1, ρ1) ⊕ · · · ⊕ (Vr, ρr) where each (Vi, ρi)
is an irreducible A-representation, then the map

⊕r
i=1 ρi : A→

⊕r
i=1 End(Vi) is also surjective.
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Proof. For the first claim, choose any L ∈ End(V ) and suppose v1, v2, . . . , vn is a basis of V . Set
wi = L(vi). By the previous corollary, some a ∈ A has ρ(a)vi = wi for all i which means that ρ(a) = L.

The second claim is nontrivial since direct sums of surjective maps are not necessarily surjective. For
example, the direct sum of the identity map becomes x 7→ (x, x, . . . , x) which is usually not surjective.

The surjective property that we wish to show will be a consequence of the second part of Proposition 1.4.

Let Y =
⊕r

i=1 End(Vi). This is a semisimple A-representation as End(Vi) ∼= V ⊕di
i where di = dimVi.

By Proposition 1.4, the subrepresentation

W
def
=

(
r⊕

i=1

ρi

)
(A) ⊂ Y

is isomorphic to
⊕r

i=1 V
⊕mi
i for some integers 0 ≤ mi ≤ di, and there is an inclusion

ϕ :

r⊕
i=1

V ⊕mi
i

∼→W ↪→ Y

that is given by a direct sum of inclusions ϕi : V
⊕mi
i ↪→ V ⊕di

i .

Since each ρi is surjective, the composition of this inclusion with the projection Y → End(Vi) is surjective.
Hence each ϕi is surjective and mi = di. This shows that

⊕
i ρi is surjective.

2 matrix algebras, filtrations, finite-dimensional algebras

2.1 Matrix algebras

We have already seen that the algebra of all n × n matrices over K has a unique isomorphism class of
irreducible representations. We can generalize this to block diagonal matrix algebras.

Choose integers d1, d2, . . . , dr > 0.

Let A =
⊕r

i=1 Matdi
(K) where we define Matd(K) to be the algebra of d × d matrices over K. Set

n =
∑r

i=1 di. Then we can view A as the subalgebra of Matn(K) consisting of all block diagonal matrices
with successive blocks of size di × di.

The vector spaceKn is automatically anA-representation. We construct a sequence of sub-representations:

Let V1 ⊆ Kn be the subspace of vectors with zeros outside rows 1, 2, . . . , d1

Let V2 ⊂ Kn be the subspace of vectors with zeros outside rows d1 + 1, d1 + 2, . . . , d1 + d2.

Let V3 ⊂ Kn be the subspace of vectors with zeros outside rows d1 + d2 +1, d1 + d2 +2, . . . , d1 + d2 + d3.

Define V4, . . . , Vr analogously, so Vr ⊆ Kn is the subspace of vectors with zeros outside the last dr rows.

As vector spaces, we have Vi
∼= Kdi .

Theorem 2.1. In this setup, each Vi is an irreducible A-representation, and every finite-dimensional
A-representation is isomorphic to a direct sum of zero or more copies of V1, V2, . . . , Vr.

Before proving this theorem, we introduce another definition.

Definition 2.2 (dual representation). Suppose (V, ρ) is an A-representation. Let V ∗ be the vector space
of all K-linear maps λ : V → K. Then let ρ∗ : A→ End(V ∗) be the linear map defined by

ρ∗(a)(λ) : x 7→ λ(ρ(a)(x)) for a ∈ A and λ ∈ V ∗.

4



Representation Theory Transcribed by Zhenpeng Wang

We refer to the pair (V ∗, ρ∗) as the dual of (V, ρ).

It is a representation of the opposite algebra Aop.

Fact 2.3. For A =
⊕r

i=1 Matdi
(K) ⊆ Matn(K), the usual matrix transpose map X 7→ X⊤ is an algebra

isomorphism A ∼= Aop.

Given a linear map between vector spaces L : V →W, define L∗ : W ∗ → V ∗ by L∗(f) = f ◦ L.

Fact 2.4. If L is injective then L∗ is surjective, and if L is surjective then L∗ is injective.

Let’s proof the theorem 2.1

Proof. It is easy to see that each Vi is an irreducible A-representation, as each nonzero element of Vi is
cyclic for the action of A.

Let X be some finite m-dimensional representation of A where m <∞.

Then X∗ is representation of Aop ∼= A.

In other words, X∗ can be viewed as an A-representation for the action

a · λ : x 7→ λ(a⊤x) for x ∈ X, λ ∈ X∗, a ∈ A.

Choose a basis {λ1, . . . , λm} for X∗. Then let ϕ : A⊕ · · · ⊕A = A⊕m → X∗ be the map

ϕ(a1, a2, . . . , am) = a1λ1 + a2λ2 + · · ·+ amλm.

Because K ⊂ A, this map is surjective. Therefore, the dual map ϕ∗ : X → (A⊕m)∗ is injective.

Key claim: The A-representations (A⊕m)∗ and A⊕m are isomorphic.

If we can prove this, then it will follow that X is isomorphic to a subrepresentation of A⊕m. As we have
A ∼=

⊕r
i=1 V

⊕di
i as A-representations (the isomorphism is provided by viewing a matrix as a tuple of

column vectors), we would then get

X ∼=

(
a subrepresentation of A⊕m ∼=

r⊕
i=1

V ⊕mdi
i

)
,

which by our technical proposition would imply that X ∼=
⊕r

i=1 V
⊕si
i for some integers si ≥ 0 as desired.

We will only explain the m = 1 case of the key claim.

Let A act on A∗ by a · λ : x 7→ λ(a⊤x) for a ∈ A and λ ∈ A∗. Define Θ : A→ A∗ to be the linear map

Θ : a 7→ (x 7→ tr(a⊤x)).

Then Θ is a bijection since it is a nonzero linear map with trivial kernel between finite-dimensional vector
spaces of the same dimension. It is also a homomorphism of A-representations since we have

Θ(gh)(x) = tr(h⊤g⊤x) = Θ(h)(g⊤x) = (g ·Θ(h))(x) for g, h, x ∈ A,

which implies that Θ(gh) = g ·Θ(h). Thus Θ : A
∼→ A∗ is an isomorphism of A-representations.

2.2 Filtrations

Continue to let A be an algebra. Suppose V is an A-representation.
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Definition 2.5 (filtration). A filtration of V is a finite, increasing sequence of subspaces

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

where each Vi is sub-representation of V .

Lemma 2.6. If dimV < ∞ then V has a filtration in which each quotient Vi/Vi−1 is an irreducible
A-representation.

Proof. We argue by induction on dimV .

If dimV ≤ 1 then the result is trivial: just take n = 1 and Vn = V .

Assume dimV > 1 and choose any irreducible subrepresentation V1 ⊂ V .

Then let U = V/V1. By induction there is a filtration

0 = U0 ⊂ U1 ⊂ · · · ⊂ Un−1 = U

in which each quotient Ui/Ui−1 is irreducible.

Let Vi be the preimage of Ui−1 under the quotient map V → V/V1 = U . Then

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

gives the desired filtration, since Vi/Vi−1
∼= (Vi/V1)/(Vi−1/V1) = Ui−1/Ui−2 for i > 1.

2.3 Radicals of finite-dimensional algebras

Assume that A is an algebra with dimA <∞.

Definition 2.7 (radical). The radical of A is the set of elements a ∈ A that act as zero in every
irreducible representation of A. Let Rad(A) denote this set of elements.

Proposition 2.8. The set Rad(A) is a two-sided ideal of A.

Proof. The set Rad(A) is a subspace of A since if (V, ρ) is a representation then

ρ(x) = 0 =⇒ ρ(cx) = cρ(x) = 0 and ρ(x) = 0 = ρ(y) =⇒ ρ(x+ y) = ρ(x) + ρ(y) = 0

for all x, y ∈ A and c ∈ K. It is also a two-sided ideal since if a, b ∈ A then

ρ(x) = 0 =⇒ ρ(axb) = ρ(a)ρ(x)ρ(b) = 0.

Let I be a two-sided ideal in A. For integers n ≥ 1, let In = K-span{x1x2 · · ·xn : xi ∈ I}.

We say that I is nilpotent if In = 0 for some n > 0.

For example, the subspace of strictly upper triangular matrices is a nilpotent ideal in the algebra of all
upper triangular n× n matrices over K.

Proposition 2.9. If I is a nilpotent two-sided ideal in A then I ⊆ Rad(A).
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Proof. Suppose I is a nilpotent two-sided ideal with In = 0. Choose any irreducible A-representation

V and pick 0 ̸= v ∈ V . Then the subspace Iv
def
= {xv : x ∈ I} is a subrepresentation. If Iv = V then

there is some x ∈ I with xv = v, which is impossible as xn = 0. Therefore Iv = 0 as it is a proper
subrepresentation of an irreducible representation. Since V was arbitrary, it follows that I ⊆ Rad(A).

The following shows that Rad(A) is precisely the largest nilpotent two-sided ideal in A.

Proposition 2.10. Rad(A) is a nilpotent two-sided ideal.

Proof. Since dimA <∞, the previous section shows that there exists a filtration of the regular represen-
tation 0 = A0 ⊂ A1 ⊂ · · · ⊂ An = A in which each quotient Ai/Ai−1 is irreducible as an A-representation.

Each x ∈ Rad(A) acts as zero on Ai/Ai−1, which means that xAi ⊂ Ai−1.

Therefore if x1, x2, · · · ∈ Rad(A) then x1x2 · · ·xiAi ⊂ A0 ⊂ A1 ⊂ · · · ⊂ Ai−1 and x1x2 · · ·xnAn = 0.
Hence Rad(A)n = 0.

2.4 Representations of nite-dimensional algebras

As a final application today, we can “classify” all representations of finite-dimensional algebras.

Theorem 2.11. Suppose A is a finite-dimensional algebra. Then A has finitely many isomorphism classes
of irreducible representations V1, V2, . . . , Vr and A/Rad(A) ∼=

⊕r
i=1 End(Vi) as K-algebras. Moreover,

every irreducible A-representation is finite-dimensional.

Notice that since dimVi is finite, we have End(Vi) ∼= Matd(K) for d = dimVi.

Therefore A/Rad(A) is isomorphic to a block diagonal matrix algebra of the form considered earlier
today.

Proof. Suppose V is an A-representation.

If 0 ̸= x ∈ V then Ax is a nonzero subrepresentation of dimension at most dimA <∞.

Therefore, if V is irreducible then we must have V = Ax and dimV ≤ dimA <∞.

Now suppose (V1, ρ1), . . . , (Vr, ρr) are pairwise non-isomorphic, irreducible A-representations.

By the density theorem, the direct sum

ϕ =

r⊕
i=1

ρi : A→
r⊕

i=1

End(Vi)

is a surjective map. Since each End(Vi) has dimension (dimVi)
2, we have

r ≤
r∑

i=1

(dimVi)
2 ≤ dimA <∞

Thus r cannot be arbitrarily large, so the number of distinct isomorphism classes of irreducible A-
representations is finite and at most dimA.

Finally assume r is maximal above, so that every irreducible A-representation is isomorphic to some Vi.

Then Rad(A) = ker(ϕ) so ϕ passes to an isomorphism A/Rad(A) ∼=
⊕r

i=1 End(Vi).

Corollary 2.12. If V1, V2, . . . , Vr are pairwise non-isomorphic irreducible representations of a finite-
dimensional algebra A then

∑r
i=1(dimVi)

2 ≤ dimA.
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3 semisimple algebras, characters, two general theorems

3.1 Semisimple algebras

Our main new results today concern the following class of algebras.

Definition 3.1 (semisimple algebra). A finite-dimensional algebra A is called semisimple if Rad(A) = 0.

Recall that a representation is semisimple if it is a direct sum of irreducible representations.

Theorem 3.2. Suppose A =
⊕r

i=1 Matdi(K) for some integers d1, d2, . . . , dr > 0. For each index
i ∈ {1, 2, . . . , r}, A has an irreducible representation Vi of dimension di, and every finite-dimensional
representation of A is a direct sum of copies of V1, V2, . . . , Vr, which are pairwise non-isomorphic.

If we view A ⊆ Matn(K) as a subalgebra of block diagonal n× n matrices where n = d1 + d2 + · · ·+ dr,
then we can construct Vi as the subspace of vectors in Kn with zeros outside the rows indexed by

(d1 + d2 + · · ·+ di−1) + {1, 2, . . . , di}.

Theorem 3.3. A finite-dimensional algebra A has finitely many irreducible representations V1, . . . , Vr

up to isomorphism, each representation Vi has finite dimension di = dim(Vi), and it holds that

A/Rad(A) ∼=
r⊕

i=1

End(Vi) ∼=
r⊕

i=1

Matdi
(K).

Proposition 3.4. Assume A is an algebra over K with dimA <∞. The following are equivalent:

1. A is semisimple.

2.
∑r

i=1 dim(Vi)
2 = dimA where Vi are the distinct isomorphism classes of irreducibleA-representations.

3. A ∼=
⊕r

i=1 Matdi
(K) for some integers d1, d2, . . . , dr > 0

4. Any finite-dimensional representation of A is semisimple.

5. The regular representation of A is semisimple.

Proof. We have (1) ⇐⇒ (2) since dimA− dimRad(A) =
∑r

i=1 dim(Vi)
2.

The implication (1) =⇒ (3) is Theorem 3.3. Conversely, (3) + Theorem 3.2 =⇒ (2) =⇒ (1). We conclude
that (1) ⇐⇒ (3).

Now we claim that (3) =⇒ (4) =⇒ (5) =⇒ (3).

The implication (3) =⇒ (4) holds by Theorem 3.2 and (4) =⇒ (5) is trivial.

To show that (5) =⇒ (3), assume (5). Then we can write A =
⊕r

i=1 diVi where V1, V2, . . . , Vr are
irreducible and pairwise-non-isomorphic, since the regular representation of A is semisimple.

Now consider EndA(A) = {morphisms A→ A as A-representations} = HomA(A,A).

Schur’s lemma tells us that

• EndA(Vi) = K so EndA(diVi) ∼= Matdi
(K), and

• HomA(Vi, Vj) = 0 if i ̸= j, so HomA(diVi, djVj) = 0 if i ̸= j.
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Thus, we compute EndA(A) = HomA(A,A) =
⊕

i,j Hom(diVi, djVj) ∼=
⊕

i Matdi
(K).

Exercise: Show that (EndA(A))op ∼= A or equivalently that EndA(A) ∼= Aop.

Last time: There is an isomorphism (
⊕

i Matdi(K))
op ∼=

⊕
i Matdi(K) afforded by the transpose map.

Thus we have A ∼= (EndA(A))op ∼= (
⊕

i Matdi(K))
op ∼=

⊕
i Matdi(K).

This is property (3), so (5) =⇒ (3) as desired.

3.2 Characters

Let A be an algebra. Suppose (V, ρ) is a finite-dimensional representation of A.

Definition 3.5 (character). The character of (V, ρ) is the linear map χ(V,ρ) : A→ K with the formula

χ(V,ρ)(a) = tr(ρ(a)) for a ∈ A.

How can we compute the trace of ϕ ∈ End(V )?

First choose a basis e1, e2, . . . , en of V . Then tr(ϕ) =
∑n

i=1 (coefficient of ei in ϕ(ei)).

Some basic and well-known facts about traces:

1. The method just given to compute the trace does not depend on the choice of basis.

2. We have tr(ϕ1ϕ2) = tr(ϕ2ϕ1) for all ϕ1, ϕ2 ∈ End(V ), so tr(ϕ1ϕ2ϕ
−1
1 ) = tr(ϕ2) if ϕ1 is invertible.

3. If (V1, ρ1) ∼= (V2, ρ2) are finite-dimensional A-representations then χ(V1,ρ1) = χ(V2,ρ2).

To abbreviate, we will sometimes write χV instead of χ(V,ρ).

Let [A,A] = K-span
{
[a, b]def = ab− ba : a, b ∈ A

}
. We view this as just a vector space.

Fact 3.6. We always have [A,A] ⊆ ker(χ(V,ρ))

Proof. Let χ = χ(V,ρ). Then χ(ab− ba) = tr(ρ(ab))− tr(ρ(ba)) = tr(ρ(a)ρ(b))− tr(ρ(b)ρ(a)) = 0

In the following theorem, dimA is not required to be finite.

Theorem 3.7. The characters of any list of non-isomorphic irreducible finite-dimensionalA-representations
are linearly independent (and, in particular, are distinct).

Proof. Suppose (V1, ρ1), (V2, ρ2), . . . , (Vr, ρr) are pairwise non-isomorphic irreducible finite-dimensional
A-representations. Let χi = χ(Vi,ρi). By the density theorem, the map

ρ1 ⊕ · · · ⊕ ρr : A→ End(V1)⊕ · · · ⊕ End(Vr)

is surjective. Therefore, if
∑r

i=1 λiχi(a) = 0 for all a ∈ A for some coefficients λ1, λ2, . . . , λr ∈ K, then

r∑
i=1

λitr(Mi) = 0 for any Mi ∈ End(Vi) chosen independently,

which is only possible if λ1 = λ2 = · · · = λr = 0.

We say that a character χ(V,ρ) is irreducible if (V, ρ) is irreducible.

Theorem 3.8. Assume A is semisimple and dimA < ∞. Then the irreducible characters of A are a
basis for the vector space (A/[A,A])∗ of linear maps A/[A,A]→ K.

9



Representation Theory Transcribed by Zhenpeng Wang

Proof. Each character χ has [A,A] ⊂ ker(χ), so χ belongs to (A/[A,A])∗.

Since A = Matd1
(K)⊕ · · · ⊕Matdr

(K) it follows that [A,A] =
⊕r

i=1[Matdi
(K),Matdi

(K)].

We claim that [Matd(K),Matd(K)] = sld(K), where sld(K) is the vector space of d × d matrices over K
with zero trace. To prove the claim, note that the trace map certainly vanishes on [Matd(K),Matd(K)]
and that sld(K) is spanned by the commutators

Eij = [Eik, Ekj ] for i ̸= j and Eii − Ei+1,i+1 = [Ei,i+1, Ei+1,i].

where Eij is the elementary matrix with 1 in entry (i, j) and 0 elsewhere.

With the claim proved, we have A/[A,A] ∼= Kr since Matd(K)/sld(K) ∼= K.

Finally, we know that A has r distinct irreducible characters (by Theorem 3.2), and these are linearly
independent elements of (A/[A,A])∗, so they must be a basis as dim(A/[A,A])∗ = dim(A/[A,A]) = r.

Two general results

We finish today with two general results that can be applied to algebras A that are not necessarily
semisimple. Assume dimA <∞. Let V be a finite-dimensional representation of A.

Theorem 3.9 (Jordan-Hölder theorem). Suppose we have filtrations

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V and 0 = V ′
0 ⊂ V ′

1 ⊂ · · · ⊂ V ′
m = V

where Vi and V ′
i are subrepresentations such that the quotients Wi := Vi/Vi−1 and W ′

i := V ′
i /V

′
i−1 are

irreducible. Then n = m and there exists a permutation σ of {1, 2, . . . , n} such that Wσ(i)
∼= W ′

i for all i.

We call the common length m = n of these filtrations the length of the representation V .

Proof. We can give a simple proof when char(K) = 0. In this case, it follows by the additive property
over exact sequences that χV = χW + χV/W if W is any subrepresentation of V , and so we have χV =∑n

i=1 χWi =
∑m

i=1 χW ′
i
.

Then we can deduce the theorem by the linear independence of the irreducible characters of A.

This argument does not work for char(K) = p > 0, because the multiplicities of the irreducible characters
in the decomposition of χV could be multiples of p. One can handle this case by a more involved inductive
argument; see the textbook for the details.

We maintain the same setup for A and V in the next theorem.

Theorem 3.10 (Krull-Schmidt theorem). There is a decomposition of V , which is unique up to isomor-
phism and rearrangement of factors, as a direct sum of indecomposable A-representations.

We will give the proof next time. While the existence of such a decomposition follows pretty easily by
induction on dimV , the uniqueness claim in the theorem is nontrivial.

4 Krull-Schmidt theorem, tensor products of algebras

4.1 Two general theorems

Our goal today is to establish two general theorems about representations of an algebra A that is not
necessarily semisimple. We proved the first of these theorems last time:

10
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Theorem 4.1 (Jordan-Hölder theorem). If V is an A-representation with dimV <∞ then there exists
a filtration 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V where each Vi is a subrepresentation and each quotient Vi/Vi−1

is irreducible. Moreover, any other filtration with these properties has same length n and the same
irreducible quotients up to isomorphism and permutations of indices.

Today we will supply the proof of the next theorem:

Theorem 4.2 (Krull-Schmidt theorem). If V is an A-representation with dimV <∞ then there exists
a decomposition V =

⊕
i∈I Vi where each Vi is an indecomposable subrepresentation, and this decompo-

sition is unique up to isomorphism and rearrangement of factors (permutation).

Remember that when A is semisimple, every indecomposable representation is irreducible, but for a
general algebra we may not be able to decompose a representation into a direct sum of irreducible
subrepresentations. The Krull-Schmidt theorem is relevant to the latter setting.

We will prove the Krull-Schmidt theorem after establishing a few lemmas.

A linear map θ : W →W is nilpotent if θN := θ ◦ θ ◦ · · · ◦ θ is zero for some N > 0.

Lemma 4.3. Let W be an indecomposable A-representation where dimW < ∞. Suppose θ : W → W
is a morphism of A-representations. Then θ is either an isomorphism or nilpotent.

Proof. For λ ∈ K, the generalized λ-eigenspace of θ is

Wλ := {x ∈W : (θ − λ)N (x) = 0 for some N > 0}.

The subspace Wλ is nonzero if and only if λ is an eigenvalue of θ.

By standard linear algebra over algebraically closed fields, we know that W =
⊕

λ Wλ where the direct
sum is over the eigenvalues of θ. Observe that each Wλ is an A-subrepresentation.

Since W is indecomposable, θ must only have one eigenvalue λ. If λ = 0 then θ is nilpotent since W = W0.

If λ ̸= 0 then θ is invertible, and hence an isomorphism of A-representations.

Lemma 4.4. Let W be an indecomposable A-representation where dimW <∞. Suppose θs : W → W
for s = 1, 2, . . . , n are nilpotent morphisms of A-representations. Then θ := θ1+ · · ·+θn is also nilpotent.

Proof. We argue by contradiction. Let n be minimal such that the lemma fails.

Then we must have n > 1 and θ is not nilpotent. Hence θ is invertible by previous lemma.

Therefore we can write 1 = θ−1θ =
∑n

s=1 θ
−1θs.

Since ker(θ−1θs) = θ−1(ker(θs)) ̸= 0, each θ−1θs is not invertible and therefore nilpotent by the lemma.

But then 1− θ−1θn =
∑n−1

s=1 θ−1θs is invertible, and therefore not nilpotent, since if X is nilpotent then

(1−X)−1 = 1 +X +X2 + · · · .

This contradicts the minimality of n, so we conclude that the lemma actually holds for all n.

We now return to the proof of the Krull-Schmidt theorem 4.2.

11
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Proof. To show the existence of an indecomposable decomposition V =
⊕

i∈I Vi, note that if V is not
indecomposable then must exist nonzero subrepresentations U and W with V = U⊕W , and by induction
on dimension we can assume that U and W already have indecomposable decompositions.

The hard part is showing the uniqueness of the resulting decomposition.

Suppose V =
⊕m

s=1 Vs =
⊕n

s=1 Ws where each Vs and Ws is an indecomposable subrepresentation. Let

is : Vs ↪→ V ps : V ↠ Vs

js : Ws ↪→ V qs : V ↠ Ws

be the natural inclusion and projection maps.

Define θs = p1 ◦ js ◦ qs ◦ i1 so that

θs : V1
i1−→ V

qs−→Ws
js−→ V

p1−→ V1.

Note that is, ps, js, qs, and θs are all morphisms of A-representations.

Also, notice that the sum θ1 + θ2 + · · ·+ θn is the identity map V1 → V1.

Each θs is either nilpotent or an isomorphism by Lemma 4.3.

Since
∑n

s=1 θs is not nilpotent, some θs is an isomorphism by Lemma 4.4.

Without loss of generality we can assume that θ1 : V1 → V1 is an isomorphism. Since

θ1 : V1
q1◦i1−−−→W1

p1◦j1−−−→ V1

is an isomorphism, we must have W1 = image(q1 ◦ i1)⊕ ker(p1 ◦ j1).

As W1 is indecomposable, both p1 ◦ j1 : W1 → V1 and q1 ◦ i1 : V1 →W1 must be isomorphisms.

Let V ′ =
⊕m

s=2 Vs and W ′ =
⊕n

s=2 Ws so that V = V1 ⊕ V ′ = W1 ⊕W ′. Let

h : V ′ ↪→ V ↠ W ′

be the composition of the obvious inclusion and projection maps.

Clearly ker(h) = V ′ ∩W1, but (p1 ◦ j1)(V ′ ∩W1) = 0.

Since p1 ◦ j1 : W1 → V1 is isomorphism, must have ker(h) = 0 so h : V ′ →W ′ is isomorphism.

Now by induction applied to the decompositions

V ′ =

m⊕
s=2

Vs
∼=

n⊕
s=2

Ws = W ′, (1)

we must have m = n and there must exist a permutation σ with Vs
∼= Wσ(s) for all s.

This establishes that the same holds for our starting decompositions V =
⊕m

s=1 Vs =
⊕n

s=1 Ws.

4.2 Tensor products of algebras and representations

To finish today’s lecture, we briefly discuss representations of tensor product algebras.

Let A and B be K-algebras and write ⊗ = ⊗K for the usual tensor product for K-vector spaces.

Since A and B are vector spaces, we can consider the vector space A⊗B. It has more structure:

Fact 4.5. The vector space A⊗B is itself a K-algebra for the product given by the bilinear operation

(A⊗B)× (A⊗B)→ A⊗B

satisfying (a⊗ b)(a′ ⊗ b′) := aa′ ⊗ bb′ for a, a′ ∈ A, b, b′ ∈ B. The unit for this product is 1A ⊗ 1B .
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Let V be an A-representation and let W be a B-representation. Then V ⊗W has a unique structure as
an A⊗B-representation in which (a⊗ b)(v ⊗ w) := av ⊗ bw for a ∈ A, b ∈ B, v ∈ V,w ∈W .

Theorem 4.6. Assume dimV < ∞ and dimW < ∞. Then V ⊗ W is irreducible (as an A ⊗ B-
representation) if V and W are irreducible (as A- and B-representations).

Proof. Assume V and W are both irreducible and of finite dimension.

By the density theorem, we have surjective maps ρV : A→ End(V ) and ρW : A→ End(W ).

Check that ρV ⊗ ρW : A⊗B → End(V )⊗ End(W ) is also surjective.

If dimV <∞ and dimW <∞ then there is an isomorphism End(V )⊗ End(W ) ∼= End(V ⊗W ).

But the map ρV⊗W : A⊗B → End(V ⊗W ) is thus surjective as it is the composition

A⊗B
ρV ⊗ρW−−−−−→ End(V )⊗ End(W )

∼=−→ End(V ⊗W ).

Hence V ⊗W is irreducible, since ρV⊗W being surjective implies that every 0 ̸= x ∈ V ⊗W is cyclic.

The previous theorem has a converse.

Theorem 4.7. Suppose M is an irreducible A⊗B-representation of finite dimension. Then M ∼= V ⊗W
for some irreducible A-representation V and irreducible B-representation W .

Proof. Sketch: We can assume A and B are finite-dimensional by replacing each algebra by its image
under

A←↩ A⊗B ↠ End(M) and B ←↩ A⊗B ↠ End(M)

where the inclusions send a 7→ a⊗ 1B and b 7→ 1A ⊗ b. Next, check that

Rad(A⊗B) = Rad(A)⊗B +A⊗ Rad(B)

so (A⊗B)/Rad(A⊗B) ∼= A/Rad(A)⊗B/Rad(B) andM is an irreducible representation of this quotient.

Finally, the result can be deduced by identifying the quotient algebras A/Rad(A) and B/Rad(B) with
explicit (direct sums of) matrix algebras, using the classification of irreducible representations for such
algebras and the homework exercise checking that Matn(K)⊗Matm(K) ∼= Matmn(K).
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