Some relative research of algebraic geometry codes
We introduce cohomology groups associated to triples $(E,A_1,A_2)$ where
Definition: Given such a triple $(E,A_1,A_2)$ we set
\[H^0(E; A_1, A_2)=A_1\cap A_2,\]and
\[H^1(E; A_1, A_2)=E/(A_1 + A_2).\]of dimension, respectively:
\[h^0(E; A_1, A_2)=\dim\!\big(H^0(E; A_1, A_2)\big),\qquad h^1(E; A_1, A_2)=\dim\!\big(H^1(E; A_1, A_2)\big).\]
It turns out these $H^0$ and $H^1$ can be identified with the cohomology groups of any of the following two quasi-isomorphic complexes of length 2:
\[0 \longrightarrow A_1 \oplus A_2 \longrightarrow E \longrightarrow 0,\]or
\[0 \longrightarrow E \longrightarrow E/A_1 \oplus E/A_2 \longrightarrow 0.\]To be more precise, the exact definition of these complexes, together with a quasi-isomorphism between them, and the identification of the above two complexes with their cohomology groups, all depend on some choice of signs. A possible choice is the following:
\[\begin{CD} 0 @>>> A_1\cap A_2 @>++>> A_1\oplus A_2 @>+- >> E @>>> E/(A_1{+}A_2) @>>> 0 \\ @. @V=VV @VVV @VVV @V=VV @. \\ 0 @>>> A_1\cap A_2 @>>> E @>-+>> E/A_1 \oplus E/A_2 @>++>> E/(A_1{+}A_2) @>>> 0 \end{CD}\]where the top left $+\,+$ means that $x\in A_1\cap A_2$ is sent to $(x,x)\in A_1\oplus A_2$, the $+\,-$ just next means that $(a_1,a_2)\in A_1\oplus A_2$ is sent to $a_1-a_2\in E$, etc.
Here is the proof of the cohomology groups for the quasi-isomorphic complexes above:
\(0 \longrightarrow A_1\oplus A_2 \xrightarrow{\;\iota\;} E \longrightarrow 0, \qquad \iota(a_1,a_2)=a_1-a_2 .\)
- $H^0$: $\ker\iota={(a_1,a_2):a_1-a_2=0}\cong{(a,a):a\in A_1\cap A_2}\cong A_1\cap A_2$.
- $H^1$: $\operatorname{im}\iota={a_1-a_2:a_i\in A_i}=A_1+A_2$ (since $A_2=-A_2$). Hence $H^1=E/\operatorname{im}\iota=E/(A_1+A_2)$.
\(0 \longrightarrow E \xrightarrow{\;\Delta\;} E/A_1 \oplus E/A_2 \longrightarrow 0, \qquad \Delta(x)=(x+A_1,\;x+A_2).\)
\[\pi: E/A_1\oplus E/A_2 \longrightarrow E/(A_1+A_2),\qquad \pi(x+A_1,\;y+A_2)=(x-y)+(A_1+A_2).\]
- $H^0$: $\ker\Delta={x\in E:x\in A_1\text{ and }x\in A_2}=A_1\cap A_2$.
- $H^1$: Define a surjection
This is well defined: replacing $x$ by $x+a_1$ and $y$ by $y+a_2$ with $a_i\in A_i$ changes $x-y$ by $a_1-a_2\in A_1+A_2$.
Its kernel is
\[\ker\pi=\{(x+A_1,y+A_2):x-y\in A_1+A_2\}=\operatorname{im}\Delta,\]since if $x-y=a_1+a_2$ with $a_i\in A_i$, then $(x+A_1,y+A_2)=(y+a_2+A_1,\;y+A_2)=\Delta(y+a_2)$; conversely $\pi(\Delta(z))=0$ for all $z$.
By the First Isomorphism Theorem,
\[H^1=\operatorname{coker}\Delta=(E/A_1\oplus E/A_2)/\operatorname{im}\Delta \cong E/(A_1+A_2).\]
Let $(E,A_1,A_2)$ be a triple as above. If $E$ is finite dimensional, then in linear algebra we have:
\[h^0(E;A_1,A_2)-h^1(E;A_1,A_2)=\dim(A_1)+\dim(A_2)-\dim(E).\]lemma: Let $(E,A_1,A_2)$ be a triple as above. For any linear subspace $A’_2\subseteq A_2$ we have a long exact sequence
\[0\longrightarrow H^0(E;A_1,A'_2)\longrightarrow H^0(E;A_1,A_2) \longrightarrow A_2/A'_2 \longrightarrow H^1(E;A_1,A'_2)\longrightarrow H^1(E;A_1,A_2)\longrightarrow 0.\]Proof: Direct from Definition, or via the snake lemma applied to
\[\begin{CD} 0 @>>> A_1\oplus A'_2 @>>> A_1\oplus A_2 @>>> A_2/A'_2 @>>> 0\\ @. @VVV @VVV @VVV @.\\ 0 @>>> E @>>> E @>>> 0 @>>> 0 \end{CD}\]
$E^\vee$ denotes the dual vector space of $E$ (linear forms on $E$). Given a linear subspace $A\subseteq E$, let $A^\perp\subseteq E^\vee$ be the space of linear forms vanishing on $A$. Then there are natural identifications
\[A^\perp \cong (E/A)^\vee,\qquad E^\vee / A^\perp \cong A^\vee .\]lemma: Given a triple $(E,A_1,A_2)$ as above, we have a natural identification
\(H^1(E;A_1,A_2)\;=\;H^0\!\big(E^\vee;A_1^\perp,A_2^\perp\big)^\vee, \quad\text{(equivalently) }E/(A_1{+}A_2)\cong (A_1^\perp\cap A_2^\perp)^\vee.\) Proof:
\[J:E\to (A_1^\perp\cap A_2^\perp)^\vee,\qquad J(e)(\ell)=\ell(e).\]
- Construct a natural map and factor through the quotient. Using the evaluation pairing $\langle\,,\,\rangle:E^\vee\times E\to\Bbb F$, define
If $e\in A_1$ or $e\in A_2$, then $\ell(e)=0$ for all $\ell\in A_1^\perp\cap A_2^\perp$; hence $A_1+A_2\subseteq\ker J$. Therefore $J$ factors to a linear map
\[\bar J:\ E/(A_1{+}A_2)\longrightarrow (A_1^\perp\cap A_2^\perp)^\vee,\qquad \bar J([e])(\ell)=\ell(e),\]which is natural with respect to maps preserving $A_1,A_2$.
\[(A_1^\perp\cap A_2^\perp)^\perp=(A_1^\perp)^\perp+(A_2^\perp)^\perp=A_1+A_2,\]
- Injectivity of $\bar J$. If $\bar J([e])=0$, then $\ell(e)=0$ for all $\ell\in A_1^\perp\cap A_2^\perp$, so $e\in (A_1^\perp\cap A_2^\perp)^\perp$. In finite dimensions,
hence $[e]=0$ and $\bar J$ is injective.
\[\dim(E/(A_1{+}A_2))=\dim E-\dim(A_1{+}A_2),\]
- Surjectivity by a dimension count.
while $(A_1{+}A_2)^\perp=A_1^\perp\cap A_2^\perp$ gives
\[\dim\big((A_1^\perp\cap A_2^\perp)^\vee\big)=\dim(A_1^\perp\cap A_2^\perp) =\dim E-\dim(A_1{+}A_2).\]Thus $\bar J$ is an injective map between vector spaces of the same finite dimension, hence an isomorphism.
Therefore
\[H^1(E;A_1,A_2)=E/(A_1{+}A_2)\ \cong\ (A_1^\perp\cap A_2^\perp)^\vee =H^0(E^\vee;A_1^\perp,A_2^\perp)^\vee,\]naturally in $(E,A_1,A_2)$.
Let $C \subseteq \mathbb F^n$ be a $[n,k]$-code. We apply the above formalism to the triple:
Then we obtain the cohomology groups:
\[\begin{aligned} H^0(C,J) \;=\; H^0(\mathbb F^n; C, \mathbb F^{J}) \;=\; C \cap \mathbb F^{J} \;=\; C_J, \end{aligned}\]the largest (a.k.a. “shortened”) subcode of $C$ with support in $J$, and
\[\begin{aligned} H^1(C,J) \;=\; H^1(\mathbb F^n; C, \mathbb F^{J}) \;=\; \mathbb F^{n}/(C+\mathbb F^{J}) \;=\; \mathbb F^{[n]\setminus J}\big/\pi_{[n]\setminus J}(C), \end{aligned}\]where $\pi_{[n]\setminus J}:\mathbb F^{n}\to \mathbb F^{[n]\setminus J}$ is the natural projection. (Here $H^1$ can be viewed in terms of syndromes; it may be useful for decoding algorithms.)
By above lemma and definitions, for any disjoint $J,J’\subseteq [n]$, there is a long exact sequence
\[0 \longrightarrow H^0(C,J) \longrightarrow H^0(C,J\!\cup\! J') \xrightarrow{\ \pi_{J'}\ } \mathbb F^{J'} \longrightarrow H^1(C,J) \longrightarrow H^1(C,J\!\cup\! J') \longrightarrow 0.\]As before, set $h^0(C,J)=\dim H^0(C,J)$ and $h^1(C,J)=\dim H^1(C,J)$.
\[H^1(C,J)=H^0(C^\perp,\,[n]\setminus J)^\vee .\]Serre duality theorem in coding theory: Let $C \subseteq \mathbb{F}^n$ be a $[n,k]$-code. Then for any subset $J \subseteq [n]$ we have a canonical identification
\[h^0(C,J)-h^0\!\big(C^\perp,[n]\setminus J\big)=\#J+k-n .\]Riemann-Roch theorem in coding theory: Let $C \subseteq \mathbb{F}^n$ be a $[n,k]$-code. Then for any $J \subseteq [n]$,
Since \(h^0(C,J)=0\) for \(\#J<d=d_{\min}(C)\), introduce the normalized cardinality
\[|J|_{\mathrm{norm}}=\#J-d.\]Then Riemann-Roch theorem becomes
\[h^0(C,J)-h^0\!\big(C^\perp,[n]\setminus J\big)=|J|_{\mathrm{norm}}+1-g\]where $g=n-k-d+1$ is the MDS defect of $C$.
Here are some more articles you might like to read next: